People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aslandukov, Andrii
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2023High-pressure reactions between the pnictogens: the rediscovery of BiNcitations
- 2023Structure determination of ζ-N2 from single-crystal X-ray diffraction and theoretical suggestion for the formation of amorphous nitrogencitations
- 2022Domain Auto Finder (DAFi) program: the analysis of single-crystal X-ray diffraction data from polycrystalline samplescitations
Places of action
Organizations | Location | People |
---|
article
High-pressure reactions between the pnictogens: the rediscovery of BiN
Abstract
<jats:p>We explore chemical reactions within pnictogens with an example of bismuth and nitrogen under extreme conditions. Understanding chemical reactions between Bi and N, elements representing the first and the last stable elements of the nitrogen group, and the physical properties of their compounds under ambient and high pressure is far from being complete. Here, we report the high-pressure high-temperature synthesis of orthorhombic <jats:italic>Pbcn</jats:italic> BiN (S.G. #60) from Bi and N<jats:sub>2</jats:sub> precursors at pressures above 40 GPa. Using synchrotron single-crystal X-ray diffraction on the polycrystalline sample, we solved and refined the compound’s structure and studied its behavior and compressibility on decompression to ambient pressure. We confirm the stability of <jats:italic>Pbcn</jats:italic> BiN to pressures as low as 12.5(4) GPa. Below that pressure value, a group–subgroup phase transformation occurs, resulting in the formation of a non-centrosymmetric BiN solid with a space group <jats:italic>Pca</jats:italic>2<jats:sub>1</jats:sub> (S.G. #29). We use <jats:italic>ab initio</jats:italic> calculations to characterize the polymorphs of BiN. They also provide support and explanation for our experimental observations, in particular those corresponding to peculiar Bi–N bond evolution under pressure, resulting in a change in the coordination numbers of Bi and N as a function of pressure within the explored stability field of <jats:italic>Pbcn</jats:italic> BiN.</jats:p>