Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Balsara, Nitash P.

  • Google
  • 2
  • 20
  • 56

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023An ordered, self-assembled nanocomposite with efficient electronic and ionic transport.54citations
  • 2023Cycling of block copolymer composites with lithium-conducting ceramic nanoparticles2citations

Places of action

Chart of shared publication
Sheelamanthula, Rajendar
1 / 7 shared
Grundy, Lorena S.
1 / 1 shared
Giovannitti, Alexander
1 / 11 shared
Takacs, Christopher J.
1 / 3 shared
Lecroy, Garrett
1 / 5 shared
Mcculloch, Iain
1 / 44 shared
Salleo, Alberto
1 / 38 shared
Reimer, Jeffrey A.
1 / 1 shared
Quill, Tyler J.
1 / 3 shared
Halat, David M.
1 / 4 shared
Dato, Michael A.
1 / 1 shared
Cabana, Jordi
1 / 9 shared
Chen, Min
1 / 7 shared
Chakraborty, Saheli
1 / 1 shared
Jiang, Xi
1 / 3 shared
Patel, Vivaan
1 / 1 shared
Moy, Matthew
1 / 1 shared
Yu, Xiaopeng
1 / 1 shared
Maslyn, Jacqueline A.
1 / 1 shared
Hu, Linhua
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Sheelamanthula, Rajendar
  • Grundy, Lorena S.
  • Giovannitti, Alexander
  • Takacs, Christopher J.
  • Lecroy, Garrett
  • Mcculloch, Iain
  • Salleo, Alberto
  • Reimer, Jeffrey A.
  • Quill, Tyler J.
  • Halat, David M.
  • Dato, Michael A.
  • Cabana, Jordi
  • Chen, Min
  • Chakraborty, Saheli
  • Jiang, Xi
  • Patel, Vivaan
  • Moy, Matthew
  • Yu, Xiaopeng
  • Maslyn, Jacqueline A.
  • Hu, Linhua
OrganizationsLocationPeople

article

Cycling of block copolymer composites with lithium-conducting ceramic nanoparticles

  • Dato, Michael A.
  • Cabana, Jordi
  • Chen, Min
  • Chakraborty, Saheli
  • Jiang, Xi
  • Patel, Vivaan
  • Balsara, Nitash P.
  • Moy, Matthew
  • Yu, Xiaopeng
  • Maslyn, Jacqueline A.
  • Hu, Linhua
Abstract

<jats:p>Solid polymer and perovskite-type ceramic electrolytes have both shown promise in advancing solid-state lithium metal batteries. Despite their favorable interfacial stability against lithium metal, polymer electrolytes face issues due to their low ionic conductivity and poor mechanical strength. Highly conductive and mechanically robust ceramics, on the other hand, cannot physically remain in contact with redox-active particles that expand and contract during charge-discharge cycles unless excessive pressures are used. To overcome the disadvantages of each material, polymer-ceramic composites can be formed; however, depletion interactions will always lead to aggregation of the ceramic particles if a homopolymer above its melting temperature is used. In this study, we incorporate Li<jats:sub>0.33</jats:sub>La<jats:sub>0.56</jats:sub>TiO<jats:sub>3</jats:sub> (LLTO) nanoparticles into a block copolymer, polystyrene-<jats:italic>b</jats:italic>-poly (ethylene oxide) (SEO), to develop a polymer-composite electrolyte (SEO-LLTO). TEMs of the same nanoparticles in polyethylene oxide (PEO) show highly aggregated particles whereas a significant fraction of the nanoparticles are dispersed within the PEO-rich lamellae of the SEO-LLTO electrolyte. We use synchrotron hard x-ray microtomography to study the cell failure and interfacial stability of SEO-LLTO in cycled lithium-lithium symmetric cells. Three-dimensional tomograms reveal the formation of large globular lithium structures in the vicinity of the LLTO aggregates. Encasing the SEO-LLTO between layers of SEO to form a “sandwich” electrolyte, we prevent direct contact of LLTO with lithium metal, which allows for the passage of seven-fold higher current densities without signatures of lithium deposition around LLTO. We posit that eliminating particle clustering and direct contact of LLTO and lithium metal through dry processing techniques is crucial to enabling composite electrolytes.</jats:p>

Topics
  • nanoparticle
  • Deposition
  • perovskite
  • impedance spectroscopy
  • strength
  • composite
  • transmission electron microscopy
  • Lithium
  • interfacial
  • copolymer
  • homopolymer
  • block copolymer
  • clustering
  • melting temperature
  • lamellae