Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Smulders, Maarten M. J.

  • Google
  • 12
  • 23
  • 247

Wageningen University & Research

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2023Covalent adaptable networks using boronate linkages by incorporating TetraAzaADamantanes8citations
  • 2023Covalent adaptable networks using boronate linkages by incorporating TetraAzaADamantanes8citations
  • 2023Internal hydrogen bonding of imines to control and enhance the dynamic mechanical properties of covalent adaptable networks9citations
  • 2023Metal Coordination in Polyimine Covalent Adaptable Networks for Tunable Material Properties and Enhanced Creep Resistance15citations
  • 2022Raman Spectroscopy Reveals Phase Separation in Imine-Based Covalent Adaptable Networks17citations
  • 2022Raman Spectroscopy Reveals Phase Separation in Imine-Based Covalent Adaptable Networks17citations
  • 2022Self-healing antifouling polymer brushes13citations
  • 2022Diblock and random antifouling bioactive polymer brushes on gold surfaces by visible-light-induced polymerization (SI-PET-RAFT) in water45citations
  • 2022Self-healing antifouling polymer brushes : Effects of degree of fluorination13citations
  • 2021Zwitterionic dendrimer – Polymer hybrid copolymers for self-assembling antifouling coatings7citations
  • 2021The effect of polarity on the molecular exchange dynamics in imine-based covalent adaptable networks59citations
  • 2020PLL-Poly(HPMA) Bottlebrush-Based Antifouling Coatings: Three Grafting Routes36citations

Places of action

Chart of shared publication
Hurne, Simon Van
1 / 1 shared
Kisters, Marijn
2 / 2 shared
Van Hurne, Simon
1 / 1 shared
Zuilhof, Han
6 / 16 shared
Schoustra, Sybren K.
4 / 4 shared
Asadi, Vahid
1 / 5 shared
De Heer Kloots, Martijn
1 / 1 shared
Doorn, Daphne Van
1 / 1 shared
Dijksman, Joshua A.
2 / 14 shared
Posthuma, Joris
2 / 2 shared
De Heer Kloots, Martijn H. P.
1 / 1 shared
Van Doorn, Daphne
1 / 1 shared
Dam, Annemieke Van
1 / 1 shared
Teunissen, Lucas
1 / 1 shared
Fritz, Pina
1 / 1 shared
Lagen, B. Van
1 / 2 shared
Kuzmyn, Andriy R.
2 / 2 shared
Van Dam, Annemieke
1 / 1 shared
Scheres, Luc
2 / 4 shared
Roeven, Esther
2 / 3 shared
Schoustra, S. K.
1 / 1 shared
Groeneveld, T.
1 / 1 shared
Baggerman, Jacob
1 / 2 shared
Chart of publication period
2023
2022
2021
2020

Co-Authors (by relevance)

  • Hurne, Simon Van
  • Kisters, Marijn
  • Van Hurne, Simon
  • Zuilhof, Han
  • Schoustra, Sybren K.
  • Asadi, Vahid
  • De Heer Kloots, Martijn
  • Doorn, Daphne Van
  • Dijksman, Joshua A.
  • Posthuma, Joris
  • De Heer Kloots, Martijn H. P.
  • Van Doorn, Daphne
  • Dam, Annemieke Van
  • Teunissen, Lucas
  • Fritz, Pina
  • Lagen, B. Van
  • Kuzmyn, Andriy R.
  • Van Dam, Annemieke
  • Scheres, Luc
  • Roeven, Esther
  • Schoustra, S. K.
  • Groeneveld, T.
  • Baggerman, Jacob
OrganizationsLocationPeople

article

Covalent adaptable networks using boronate linkages by incorporating TetraAzaADamantanes

  • Smulders, Maarten M. J.
  • Hurne, Simon Van
  • Kisters, Marijn
Abstract

<jats:p>Boronic esters prepared by condensation of boronic acids and diols have been widely used as dynamic covalent bonds in the synthesis of both discrete assemblies and polymer networks. In this study we investigate the potential of a new dynamic-covalent motif, derived from TetraAzaADamantanes (TAADs), with their adamantane-like triol structure, in boronic ester-based covalent adaptable networks (CANs). The TetraAzaADamantane-boronic ester linkage has recently been reported as a more hydrolytically stable boronic ester variant, while still having a dynamic pH response: small-molecule studies found little exchange at neutral pH, while fast exchange occurred at pH 3.8. In this work, bi- and trifunctional TetraAzaADamantane linkers were synthesised and crosslinked with boronic acids to form rubber-like materials, with a Young’s modulus of 1.75 MPa. The dynamic nature of the TetraAzaADamantane networks was confirmed by stress relaxation experiments, revealing Arrhenius-like behaviour, with a corresponding activation energy of 142 ± 10 kJ/mol. Increasing the crosslinking density of the material from 10% to 33% resulted in reduced relaxation times, as is consistent with a higher degree of crosslinking within the dynamic networks. In contrast to the reported accelerating effect of acid addition to small-molecule TetraAzaADamantane complexes, within the polymer network the addition of acid increased relaxation times, suggesting unanticipated interactions between the acid and the polymer that cannot occur in the corresponding small-molecules analogues. The obtained boronate-TetraAzaADamantane materials were thermally stable up to 150°C. This thermal stability, in combination with the intrinsically dynamic bonds inside the polymer network, allowed these materials to be reprocessed and healed after damage by hot-pressing.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • experiment
  • activation
  • rubber
  • ester