People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kellomäki, Minna
Tampere University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024A comprehensive study on rheological properties of photocrosslinkable gallol-metal complexed hyaluronic acid-based biomaterial inkscitations
- 2023Comprehensive characterisation of the compressive behaviour of hydrogels using a new modelling procedure and redefining compression testingcitations
- 2023Interpretable machine learning methods for monitoring polymer degradation in extrusion of polylactic acidcitations
- 2023Hydrolytic degradation of polylactide/polybutylene succinate blends with bioactive glasscitations
- 2023Chemical interactions in composites of gellan gum and bioactive glass: self-crosslinking and in vitro dissolutioncitations
- 2022Fractal-like Hierarchical CuO Nano/Microstructures for Large-Surface-to-Volume-Ratio Dip Catalystscitations
- 2022Injectable and self-healing biobased composite hydrogels as future anticancer therapeutic biomaterialscitations
- 2021Comprehensive characterisation of the compressive behaviour of hydrogels using a new modelling procedure and redefining compression testingcitations
- 2021Impact of glass composition on hydrolytic degradation of polylactide/bioactive glass compositescitations
- 2021In vitro degradation testing of hydrogels – concept and case study of gellan gum degradation in water
- 2020Evaluation of scaffold microstructure and comparison of cell seeding methods using micro-computed tomography-based toolscitations
- 2020Materials and Orthopedic Applications for Bioresorbable Inductively Coupled Resonance Sensorscitations
- 2020A tube-source X-ray microtomography approach for quantitative 3D microscopy of optically challenging cell-cultured samplescitations
- 2019Hydrolysis and drug release from poly(ethylene glycol)-modified lactone polymers with open porositycitations
- 2019Gas-foamed poly(lactide-co-glycolide) and poly(lactide-co-glycolide) with bioactive glass fibres demonstrate insufficient bone repair in lapine osteochondral defectscitations
- 2019Characterization of the microstructure of hydrazone crosslinked polysaccharide-based hydrogels through rheological and diffusion studiescitations
- 2019Characterization of the microstructure of hydrazone crosslinked polysaccharide-based hydrogels through rheological and diffusion studiescitations
- 2018Knitted 3D Scaffolds of Polybutylene Succinate Support Human Mesenchymal Stem Cell Growth and Osteogenesiscitations
- 2018Cell response to round and star-shaped polylactide fibers
- 2018Bioresorbable Conductive Wire with Minimal Metal Contentcitations
- 2017In vitro degradation of borosilicate bioactive glass and poly(L-lactide-co-ε-caprolactone) composite scaffoldscitations
- 2016Piezoelectric sensitivity of a layered film of chitosan and cellulose nanocrystalscitations
- 2016Inductively coupled passive resonance sensor for monitoring biodegradable polymers in vitrocitations
- 2016X-ray microtomography of collagen and polylactide samples in liquidscitations
- 2014Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerizationcitations
- 2013Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiationcitations
- 2013An in vitro study of composites of poly(L-lactide-co-e-caprolactone), ß-tricalcium phosphate and ciprofloxacin intended for local treatment of osteomyelitiscitations
- 2012Processing and sustained in vitro release of rifampicin containing composites to enhance the treatment of osteomyelitiscitations
- 2011Knitted polylactide 96/4 L/D structures and scaffolds for tissue engineeringcitations
- 2011Investigation of the optimal processing parameters for picosecond laser-induced microfabrication of a polymer-ceramic hybrid materialcitations
- 2008Nano-, Pico- and femtosecond laser machining of bioabsorbable polymers and biomedical composites
Places of action
Organizations | Location | People |
---|
article
Chemical interactions in composites of gellan gum and bioactive glass: self-crosslinking and in vitro dissolution
Abstract
We investigated the interactions between the organic–inorganic phases in composites and the impact on in vitro dissolution. The composite consists of a hydrogel-forming polysaccharide gellan gum (GG, organic phase) and a borosilicate bioactive glass (BAG, inorganic phase). The BAG loading in the gellan gum matrix varied from 10 to 50 wt%. While mixing GG and BAG, the ions released from BAG microparticles crosslinked with the carboxylate anions of GG. The nature of the crosslinking was assessed, and its impact on mechanical properties, swelling ratio, and enzymatic degradation profile upon immersion for<br/>up to 2 weeks was studied. Loading up to 30 wt% of BAG in GG caused an increase in mechanical properties associated with an increasing crosslinking density. At higher BAG loading, excess divalent ions and percolation of particles led to a decrease in the fracture strength and compressive modulus. Upon immersion, a decrease in the composite mechanical properties was attributed to the dissolution of the BAG and the loosening of the glass/matrix interface. The enzymatic degradation of the composites was inhibited at higher BAG loadings (40 and 50 wt%) even when the specimen was immersed for 48 h in PBS buffer with lysozyme. During in vitro dissolution in both SBF and PBS, the ions released from the glass led to the precipitation of hydroxyapatite already at day 7. In conclusion, we thoroughly discussed the in vitro stability of the GG/BAG composite and established the maximum BAG loading to enhance the GG crosslinking and mechanical properties. Based on this study, 30, 40, and 50 wt% of BAG in GG will be further investigated in an in vitro cell culture study.