Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bauer, Frank

  • Google
  • 1
  • 4
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Characterization of polar surface groups on siliceous materials by inverse gas chromatography and the enthalpy–entropy compensation effect4citations

Places of action

Chart of shared publication
Meyer, Ralf
1 / 2 shared
Mueller, Kai
1 / 1 shared
Naumov, Sergej
1 / 3 shared
Enke, Dirk
1 / 8 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Meyer, Ralf
  • Mueller, Kai
  • Naumov, Sergej
  • Enke, Dirk
OrganizationsLocationPeople

article

Characterization of polar surface groups on siliceous materials by inverse gas chromatography and the enthalpy–entropy compensation effect

  • Meyer, Ralf
  • Mueller, Kai
  • Naumov, Sergej
  • Bauer, Frank
  • Enke, Dirk
Abstract

<jats:p>Surface-modified porous silica is a well-established composite material. To improve its embedding and application behavior, adsorption studies of various probe molecules have been performed using the technique of inverse gas chromatography (IGC). For this purpose, IGC experiments were carried out in the infinite dilution mode on macro-porous micro glass spheres before and after surface modification with (3-mercaptopropyl)trimethoxysilane. To provide information about the polar interactions between probe molecules and the silica surface, in particular, eleven polar molecules have been injected. In summary, the free surface energy for pristine silica (<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m1"><mml:mrow><mml:msubsup><mml:mi mathvariant="normal">γ</mml:mi><mml:mi mathvariant="normal">S</mml:mi><mml:mrow><mml:mi mathvariant="normal">t</mml:mi><mml:mi mathvariant="normal">o</mml:mi><mml:mi mathvariant="normal">t</mml:mi><mml:mi mathvariant="normal">a</mml:mi><mml:mi mathvariant="normal">l</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math></jats:inline-formula> = 229 mJ/m<jats:sup>2</jats:sup>) and for (3-mercaptopropyl)trimethoxysilane-modified silica (<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m2"><mml:mrow><mml:msubsup><mml:mi mathvariant="normal">γ</mml:mi><mml:mi mathvariant="normal">S</mml:mi><mml:mrow><mml:mi mathvariant="normal">t</mml:mi><mml:mi mathvariant="normal">o</mml:mi><mml:mi mathvariant="normal">t</mml:mi><mml:mi mathvariant="normal">a</mml:mi><mml:mi mathvariant="normal">l</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math></jats:inline-formula> = 135 mJ/m<jats:sup>2</jats:sup>) indicates a reduced wettability after surface modification. This is due to the reduction of the polar component of the free surface energy (<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m3"><mml:mrow><mml:msubsup><mml:mi mathvariant="normal">γ</mml:mi><mml:mi mathvariant="normal">S</mml:mi><mml:mrow><mml:mi mathvariant="normal">S</mml:mi><mml:mi mathvariant="normal">P</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math></jats:inline-formula>) from 191 mJ/m<jats:sup>2</jats:sup> to 105 mJ/m<jats:sup>2</jats:sup>. Simultaneously, with the reduction of surface silanol groups caused by surface modification of silica and, therefore, the decrease in polar interactions, a substantial loss of Lewis acidity was observed by various IGC approaches. Experiments with all silica materials have been conducted at temperatures in the range from 90°C to 120°C to determine the thermodynamic parameters, such as adsorption enthalpy (<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m4"><mml:mrow><mml:msub><mml:mrow><mml:mo>Δ</mml:mo><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>a</mml:mi><mml:mi>d</mml:mi><mml:mi>s</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math></jats:inline-formula>) and adsorption entropy (<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m5"><mml:mrow><mml:msub><mml:mrow><mml:mo>Δ</mml:mo><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mi>a</mml:mi><mml:mi>d</mml:mi><mml:mi>s</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math></jats:inline-formula>), using the Arrhenius regression procedure evaluating the IGC data. With the help of the enthalpy–entropy compensation, two types of adsorption complexes are assumed between polar probe molecules and the silica surface because of different isokinetic temperatures. Identical adsorption complexes with an isokinetic temperature of 370°C have been assigned to alkanes and weakly interacting polar probes such as benzene, toluene, dichloromethane, and chloroform. Polar probe molecules with typical functional groups such as OH, CO, and CN, having the ability to form hydrogen bonds to the silica surface, exhibit a lower isokinetic temperature of 60°C. Quantum chemical calculations of the probe molecules on a non-hydroxylated and hydroxylated silica cluster supported the formation of hydrogen bonds in the case of a strong polar adsorption complex with a bonding distance of 1.7 nm–1.9 nm to the silica surface.</jats:p>

Topics
  • porous
  • impedance spectroscopy
  • surface
  • cluster
  • experiment
  • glass
  • glass
  • composite
  • Hydrogen
  • alkane
  • surface energy
  • inverse gas chromatography