People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gunkel, Felix
Forschungszentrum Jülich
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Structural, magnetic and electrical properties of oxygendeficientLa(0.6)Sr(0.4)CoO(3-δ) thin films
- 2024Space charge governs the kinetics of metal exsolutioncitations
- 2023Separating the Effects of Band Bending and Covalency in Hybrid Perovskite Oxide Electrocatalyst Bilayers for Water Electrolysis
- 2023Enhanced metal exsolution at the non-polar (001) surfaces of multi-faceted epitaxial thin filmscitations
- 2023A High-Entropy Oxide as High-Activity Electrocatalyst for Water Oxidationcitations
- 2023A High-Entropy Oxide as High-Activity Electrocatalyst for Water Oxidationcitations
- 2022Atomistic Insights into Activation and Degradation of La0.6Sr0.4CoO3-δElectrocatalysts under Oxygen Evolution Conditionscitations
- 2022Separating the Effects of Band Bending and Covalency in Hybrid Perovskite Oxide Electrocatalyst Bilayers for Water Electrolysiscitations
- 2022A high entropy oxide as high-activity electrocatalyst for water oxidation
- 2022Quantitative Determination of Native Point‐Defect Concentrations at the ppm Level in Un‐Doped BaSnO 3 Thin Filmscitations
- 2022Atomistic Insights into Activation and Degradation of La0.6Sr0.4CoO3−δ Electrocatalysts under Oxygen Evolution Conditionscitations
- 2022Activity-Stability Relationships in Oxide Electrocatalysts for Water Electrolysiscitations
- 2021Carbonate formation lowers the electrocatalytic activity of perovskite oxides for water electrolysiscitations
- 2021Identifying Ionic and Electronic Charge Transfer at Oxide Heterointerfacescitations
- 2020SrTiO3 termination controlcitations
- 2020Effect of Cationic Interface Defects on Band Alignment and Contact Resistance in Metal/Oxide Heterojunctionscitations
- 2019Electrolysis of Water at Atomically Tailored Epitaxial Cobaltite Surfacescitations
- 2017Unraveling the enhanced Oxygen Vacancy Formation in Complex Oxides during Annealing and Growthcitations
- 2016Defect-control of conventional and anomalous electron transport at complex oxide interfacescitations
- 2016Dynamics of the metal-insulator transition of donor-doped SrTi O $_{3}$citations
- 2015Surface Termination Conversion during SrTiO$_{3}$ Thin Film Growth Revealed by X-ray Photoelectron Spectroscopycitations
- 2015The influence of the local oxygen vacancy concentration on the piezoresponse of strontium titanate thin filmscitations
- 2015Surface Termination Conversion during SrTiO3 Thin Film Growth Revealed by X-ray Photoelectron Spectroscopycitations
- 2013The role of defects at functional interfaces between polar and non-polar perovskite oxides
Places of action
Organizations | Location | People |
---|
article
Activity-Stability Relationships in Oxide Electrocatalysts for Water Electrolysis
Abstract
The oxygen evolution reaction (OER) is one of the key kinetically limiting half reactions in electrochemical energy conversion. Model epitaxial catalysts have emerged as a platform to identify structure-function-relationships at the atomic level, a prerequisite to establish advanced catalyst design rules. Previous work identified an inverse relationship between activity and the stability of noble metal and oxide OER catalysts in both acidic and alkaline environments: The most active catalysts for the anodic OER are chemically unstable under reaction conditions leading to fast catalyst dissolution or amorphization, while the most stable catalysts lack sufficient activity. In this perspective, we discuss the role that epitaxial catalysts play in identifying this activity-stability-dilemma and introduce examples of how they can help overcome it. After a brief review of previously observed activity-stability-relationships, we will investigate the dependence of both activity and stability as a function of crystal facet. Our experiments reveal that the inverse relationship is not universal and does not hold for all perovskite oxides in the same manner. In fact, we find that facet-controlled epitaxial La0.6Sr0.4CoO3-δ catalysts follow the inverse relationship, while for LaNiO3-δ, the (111) facet is both the most active and the most stable. In addition, we show that both activity and stability can be enhanced simultaneously by moving from La-rich to Ni-rich termination layers. These examples show that the previously observed inverse activity-stability-relationship can be overcome for select materials and through careful control of the atomic arrangement at the solid-liquid interface. This realization re-opens the search for active and stable catalysts for water electrolysis that are made from earth-abundant elements. At the same time, these results showcase that additional stabilization via material design strategies will be required to induce a general departure from inverse stability-activity relationships among the ...