Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Svozil, Daniel

  • Google
  • 1
  • 8
  • 8

University of Chemistry and Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Can X-Ray Powder Diffraction Be a Suitable Forensic Method for Illicit Drug Identification?8citations

Places of action

Chart of shared publication
Králík, František
1 / 1 shared
Setnička, Vladimír
1 / 1 shared
Fagan, Patrik
1 / 1 shared
Bartůněk, Vilém
1 / 4 shared
Jurásek, Bronislav
1 / 3 shared
Dehaen, Wim
1 / 47 shared
Kuchař, Martin
1 / 3 shared
Huber, Štěpán
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Králík, František
  • Setnička, Vladimír
  • Fagan, Patrik
  • Bartůněk, Vilém
  • Jurásek, Bronislav
  • Dehaen, Wim
  • Kuchař, Martin
  • Huber, Štěpán
OrganizationsLocationPeople

article

Can X-Ray Powder Diffraction Be a Suitable Forensic Method for Illicit Drug Identification?

  • Králík, František
  • Setnička, Vladimír
  • Svozil, Daniel
  • Fagan, Patrik
  • Bartůněk, Vilém
  • Jurásek, Bronislav
  • Dehaen, Wim
  • Kuchař, Martin
  • Huber, Štěpán
Abstract

New psychoactive substances (NPSs) are associated with a significant number of intoxications. With the number of readily available forms of these drugs rising every year, there are even risks for the general public. Consequently, there is a high demand for methods sufficiently sensitive to detect NPSs in samples found at the crime scene. Infrared (IR) and Raman spectroscopies are commonly used for such detection, but they have limitations; for example, fluorescence in Raman can overlay the signal and when the sample is a mixture sometimes neither Raman nor IR is able to identify the compounds. Here, we investigate the potential of X-ray powder diffraction (XRPD) to analyse samples seized on the black market. A series of psychoactive substances (heroin, cocaine, mephedrone, ephylone, butylone, JWH-073, and naphyrone) was measured. Comparison of their diffraction patterns with those of the respective standards showed that XRPD was able to identify each of the substances. The same samples were analyzed using IR and Raman, which in both cases were not able to detect the compounds in all of the samples. These results suggest that XRPD could be a valuable addition to the range of forensic tools used to detect these compounds in illicit drug samples.

Topics
  • impedance spectroscopy
  • compound