People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Spirk, Stefan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Fusion of cellulose microspheres with pulp fibers: Creating an unconventional type of papercitations
- 2023Visualizing cellulose chains with cryo scanning transmission electron microscopy
- 2022Silica-based fibers with axially aligned mesopores from chitin self-assembly and sol-gel chemistrycitations
- 2022Xylan-cellulose thin film platform for assessing xylanase activitycitations
- 2021How cellulose nanofibrils and cellulose microparticles impact paper strength—A visualization approachcitations
- 2021Visualizing Degradation of Cellulose Nanofibers by Acid Hydrolysiscitations
- 2021Visualizing Degradation of Cellulose Nanofibers by Acid Hydrolysiscitations
- 2020Cellulose metal sulfide based nanocomposite thin films
- 2019Cellulose carbamate derived cellulose thin films: preparation, characterization and blending with cellulose xanthatecitations
- 2019Cobalt Ferrite Nanoparticles for Three-Dimensional Visualization of Micro- and Nanostructured Cellulose in Papercitations
- 2019Design of Friction, Morphology, Wetting, and Protein Affinity by Cellulose Blend Thin Film Compositioncitations
- 2019Multi-layered nanoscale cellulose/CuInS2 sandwich type thin filmscitations
- 2019Three Dimensional Localization and Visualization of Paper Fines in Sheets
- 2018Thin Films from Acetylated Lignin
- 2017Interaction of tissue engineering substrates with serum proteins and its influence on human primary endothelial cellscitations
- 2017How Bound and Free Fatty Acids in Cellulose Films Impact Nonspecific Protein Adsorptioncitations
- 2016Enzymes as Biodevelopers for Nano- And Micropatterned Bicomponent Biopolymer Thin Films.citations
- 2016Topography effects in AFM force mapping experiments on xylan-decorated cellulose thin films.citations
- 2014Photoregeneration of Trimethylsilyl Cellulose as a Tool for Microstructuring Ultrathin Cellulose Supportscitations
- 2013Functional patterning of biopolymer thin films using enzymes and lithographic methodscitations
- 2013Chitosan-Silane Sol-Gel Hybrid Thin Films with controllable Layer Thickness and Morphologycitations
Places of action
Organizations | Location | People |
---|
article
Design of Friction, Morphology, Wetting, and Protein Affinity by Cellulose Blend Thin Film Composition
Abstract
Cellulose derivate phase separation in thin films was applied to generate patterned films with distinct surface morphology. Patterned polymer thin films are utilized in electronics, optics, and biotechnology but films based on bio-polymers are scarce. Film formation, roughness, wetting, and patterning are often investigated when it comes to characterization of the films. Frictional properties, on the other hand, have not been studied extensively. We extend the fundamental understanding of spin coated complex cellulose blend films via revealing their surface friction using Friction Force Microscopy (FFM). Two cellulose derivatives were transformed into two-phase blend films with one phase comprising trimethyl silyl cellulose (TMSC) regenerated to cellulose with hydroxyl groups exposed to the film surface. Adjusting the volume fraction of the spin coating solution resulted in variation of the surface fraction with the other, hydroxypropylcellulose stearate (HPCE) phase. The film morphology confirmed lateral and vertical separation and was translated into effective surface fraction. Phase separation as well as regeneration contributed to the surface morphology resulting in roughness variation of the blend films from 1.1 to 19.8 nm depending on the film composition. Friction analysis was successfully established, and then revealed that the friction coefficient of the films could be tuned and the blend films exhibited lowered friction force coefficient compared to the single-component films. Protein affinity of the films was investigated with bovine serum albumin (BSA) and depended mainly on the surface free energy (SFE) while no direct correlation with roughness or friction was found. BSA adsorption on film formed with 1:1 spinning solution volume ratio was an outlier and exhibited unexpected minimum in adsorption.