Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Al-Ghamdi, Sami G.

  • Google
  • 1
  • 1
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023A comparative life cycle assessment of fiber-reinforced polymers as a sustainable reinforcement option in concrete beams21citations

Places of action

Chart of shared publication
Mckay, Gordon
1 / 5 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Mckay, Gordon
OrganizationsLocationPeople

article

A comparative life cycle assessment of fiber-reinforced polymers as a sustainable reinforcement option in concrete beams

  • Al-Ghamdi, Sami G.
  • Mckay, Gordon
Abstract

<jats:p>Environmental awareness and the need for sustainable construction inspired researchers and practitioners to explore innovative alternatives that might reduce greenhouse gas emissions and energy use related to excessive structural work. One such alternative is the utilization of Fiber-Reinforced Polymer (FRP) bars as a reinforcement in reinforced concrete members. FRP bars possess favorable characteristics like high tensile strength, lightweight and corrosion resistance compared to steel. This feature makes FRP bars a potential solution for utilizing seawater instead of fresh water in concrete mixtures, especially in areas facing a harsh climate and water shortage like the Arabian Peninsula. This paper aims to assess and evaluate the environmental impacts through life cycle assessment of glass fiber-reinforced polymer bars, carbon fiber-reinforced polymer, and steel glass fiber reinforced polymer bars compared to steel bars. Moreover, another LCA was conducted comparing steel-reinforced beams made with desalinated fresh water to GFRP/CFRP reinforced beams made with seawater for the concrete mixture. The results indicate that the GFRP bar performed better than the steel bar in 10 out of 14 categories, while the carbon fiber-reinforced polymer bar performed worse than the steel bar in 10 out of 14 categories. The SGFRP bar had a result between the steel and GFRP bar, outperforming the steel bar in 10 categories. Furthermore, the GFRP beam exhibited better environmental performance than the steel beam in 9 out of 14 categories, while the CFRP beam performed better than the steel beam in 8 categories, attributed to the reduction in reinforcement ratio due to the high tensile strength of CFRP and GFRP bars compared to steel bars. Overall, this study sheds light on the possible environmental advantages of using FRP bars in construction and highlights the importance of sustainable construction practices in minimizing environmental impacts.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • corrosion
  • glass
  • glass
  • strength
  • steel
  • tensile strength