Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nicolini, Luis Fernando

  • Google
  • 3
  • 22
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars6citations
  • 2023Prediction of Temperature and Loading History Dependent Lumbar Spine Biomechanics Under Cyclic Loading Using Recurrent Neural Networks2citations
  • 2022Motion preservation surgery for scoliosis with a vertebral body tethering system: a biomechanical study22citations

Places of action

Chart of shared publication
Lerchl, Tanja
1 / 1 shared
Ribeiro, Marx
2 / 2 shared
Gruber, Gabriel
1 / 1 shared
Jaramillo, Héctor Enrique
1 / 2 shared
Wilke, Hans-Joachim
1 / 7 shared
Kirschke, Jan S.
1 / 1 shared
Senner, Veit
1 / 1 shared
Nispel, Kati
1 / 1 shared
Pufe, Thomas
1 / 1 shared
Markert, Bernd
2 / 9 shared
Blomeyer, Nadja
1 / 1 shared
Tandale, Saurabh Balkrishna
1 / 1 shared
Kobbe, Philipp
2 / 3 shared
Stoffel, Marcus
2 / 2 shared
Prescher, Andreas
1 / 1 shared
Eschweiler, Jörg
1 / 1 shared
Paz, Stephanie Da
1 / 1 shared
Beckmann, Agnes
1 / 1 shared
Greven, Johannes
1 / 1 shared
Trobisch, Per D.
1 / 1 shared
Seggewiß, Jana
1 / 1 shared
Hildebrand, Frank
1 / 1 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Lerchl, Tanja
  • Ribeiro, Marx
  • Gruber, Gabriel
  • Jaramillo, Héctor Enrique
  • Wilke, Hans-Joachim
  • Kirschke, Jan S.
  • Senner, Veit
  • Nispel, Kati
  • Pufe, Thomas
  • Markert, Bernd
  • Blomeyer, Nadja
  • Tandale, Saurabh Balkrishna
  • Kobbe, Philipp
  • Stoffel, Marcus
  • Prescher, Andreas
  • Eschweiler, Jörg
  • Paz, Stephanie Da
  • Beckmann, Agnes
  • Greven, Johannes
  • Trobisch, Per D.
  • Seggewiß, Jana
  • Hildebrand, Frank
OrganizationsLocationPeople

article

Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars

  • Lerchl, Tanja
  • Ribeiro, Marx
  • Nicolini, Luis Fernando
  • Gruber, Gabriel
  • Jaramillo, Héctor Enrique
  • Wilke, Hans-Joachim
  • Kirschke, Jan S.
  • Senner, Veit
  • Nispel, Kati
Abstract

<jats:p><jats:bold>Introduction:</jats:bold> Numerical modeling of the intervertebral disc (IVD) is challenging due to its complex and heterogeneous structure, requiring careful selection of constitutive models and material properties. A critical aspect of such modeling is the representation of annulus fibers, which significantly impact IVD biomechanics. This study presents a comparative analysis of different methods for fiber reinforcement in the annulus fibrosus of a finite element (FE) model of the human IVD.</jats:p><jats:p><jats:bold>Methods:</jats:bold> We utilized a reconstructed L4-L5 IVD geometry to compare three fiber modeling approaches: the anisotropic Holzapfel-Gasser-Ogden (HGO) model (HGO fiber model) and two sets of structural rebar elements with linear-elastic (linear rebar model) and hyperelastic (nonlinear rebar model) material definitions, respectively. Prior to calibration, we conducted a sensitivity analysis to identify the most important model parameters to be calibrated and improve the efficiency of the calibration. Calibration was performed using a genetic algorithm and <jats:italic>in vitro</jats:italic> range of motion (RoM) data from a published study with eight specimens tested under four loading scenarios. For validation, intradiscal pressure (IDP) measurements from the same study were used, along with additional RoM data from a separate publication involving five specimens subjected to four different loading conditions.</jats:p><jats:p><jats:bold>Results:</jats:bold> The sensitivity analysis revealed that most parameters, except for the Poisson ratio of the annulus fibers and C<jats:sub>01</jats:sub> from the nucleus, significantly affected the RoM and IDP outcomes. Upon calibration, the HGO fiber model demonstrated the highest accuracy (R<jats:sup>2</jats:sup> = 0.95), followed by the linear (R<jats:sup>2</jats:sup> = 0.89) and nonlinear rebar models (R<jats:sup>2</jats:sup> = 0.87). During the validation phase, the HGO fiber model maintained its high accuracy (RoM R<jats:sup>2</jats:sup> = 0.85; IDP R<jats:sup>2</jats:sup> = 0.87), while the linear and nonlinear rebar models had lower validation scores (RoM R<jats:sup>2</jats:sup> = 0.71 and 0.69; IDP R<jats:sup>2</jats:sup> = 0.86 and 0.8, respectively).</jats:p><jats:p><jats:bold>Discussion:</jats:bold> The results of the study demonstrate a successful calibration process that established good agreement with experimental data. Based on our findings, the HGO fiber model appears to be a more suitable option for accurate IVD FE modeling considering its higher fidelity in simulation results and computational efficiency.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • simulation
  • anisotropic