People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gn, Duda
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Titanium vs PEO Surface-Modified Magnesium Plate Fixation in a Mandible Bone Healing Model in Sheep.citations
- 2024Titanium versus plasma electrolytic oxidation surface-modified magnesium miniplates in a forehead secondary fracture healing model in sheep.citations
- 2022Towards mechanobiologically optimized mandible reconstruction: CAD/CAM miniplates vs. reconstruction plates for fibula free flap fixation: A finite element study.citations
- 2021Role of extracellular matrix structural components and tissue mechanics in the development of postoperative pancreatic fistula.citations
- 2019From macroscopic mechanics to cell-effective stiffness within highly aligned macroporous collagen scaffolds.citations
- 2019Collagen I-based scaffolds negatively impact fracture healing in a mouse-osteotomy-model although used routinely in research and clinical application.citations
- 2018Correlations between nanostructure and micromechanical properties of healing bonecitations
- 2016Hydrogels with tunable stress relaxation regulate stem cell fate and activity.citations
- 2011Spatial-temporal mapping of bone structural and elastic properties in a sheep model following osteotomycitations
- 2011Poorly Ordered Bone as an Endogenous Scaffold for the Deposition of Highly Oriented Lamellar Tissue in Rapidly Growing Ovine Bonecitations
- 2011The organization of the osteocyte network mirrors the extracellular matrix orientation in bonecitations
Places of action
Organizations | Location | People |
---|
article
Towards mechanobiologically optimized mandible reconstruction: CAD/CAM miniplates vs. reconstruction plates for fibula free flap fixation: A finite element study.
Abstract
Due to their advantages in applicability, patient-specific (CAD/CAM) reconstruction plates are increasingly used in fibula free flap mandible reconstruction. In addition, recently, CAD/CAM miniplates, with further advantages in postoperative management, have been introduced. However, biomechanical conditions induced by CAD/CAM systems remain partially unknown. This study aimed to evaluate the primary fixation stability of CAD/CAM fixators. For a patient-specific scenario, the biomechanical conditions induced in a one segmental fibula free flap stabilized using either a CAD/CAM reconstruction plate or CAD/CAM miniplates were determined using finite element analysis. The main output parameters were the strains between intersegmental bone surfaces and stresses in the fixation systems due to different biting scenarios. CAD/CAM miniplates resulted in higher mechanical strains in the mesial interosseous gap, whereas CAD/CAM reconstruction plate fixation resulted in higher strains in the distal interosseous gap. For all investigated fixation systems, stresses in the fixation systems were below the material yield stress and thus material failure would not be expected. While the use of CAD/CAM miniplates resulted in strain values considered adequate to promote bone healing in the mesial interosseous gap, in the distal interosseous gap CAD/CAM reconstruction plate fixation might result in more beneficial tissue straining. A mechanical failure of the fixation systems would not be expected.