Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rybin, Dmitry

  • Google
  • 1
  • 6
  • 74

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021State-of-the-Art of Eggshell Waste in Materials Science: Recent Advances in Catalysis, Pharmaceutical Applications, and Mechanochemistry74citations

Places of action

Chart of shared publication
Mudrinić, Tihana
1 / 6 shared
Luque, Rafael
1 / 9 shared
Rodríguez-Padrón, Daily
1 / 3 shared
Boldyreva, Elena V.
1 / 3 shared
Baláž, Matej
1 / 10 shared
Pavlović, Stefan
1 / 3 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Mudrinić, Tihana
  • Luque, Rafael
  • Rodríguez-Padrón, Daily
  • Boldyreva, Elena V.
  • Baláž, Matej
  • Pavlović, Stefan
OrganizationsLocationPeople

article

State-of-the-Art of Eggshell Waste in Materials Science: Recent Advances in Catalysis, Pharmaceutical Applications, and Mechanochemistry

  • Rybin, Dmitry
  • Mudrinić, Tihana
  • Luque, Rafael
  • Rodríguez-Padrón, Daily
  • Boldyreva, Elena V.
  • Baláž, Matej
  • Pavlović, Stefan
Abstract

<jats:p>Eggshell waste is among the most abundant waste materials coming from food processing technologies. Despite the unique properties that both its components (eggshell, ES, and eggshell membrane, ESM) possess, it is very often discarded without further use. This review article aims to summarize the recent reports utilizing eggshell waste for very diverse purposes, stressing the need to use a mechanochemical approach to broaden its applications. The most studied field with regards to the potential use of eggshell waste is catalysis. Upon proper treatment, it can be used for turning waste oils into biodiesel and moreover, the catalytic effect of eggshell-based material in organic synthesis is also very beneficial. In inorganic chemistry, the eggshell membrane is very often used as a templating agent for nanoparticles production. Such composites are suitable for application in photocatalysis. These bionanocomposites are also capable of heavy metal ions reduction and can be also used for the ozonation process. The eggshell and its membrane are applicable in electrochemistry as well. Due to the high protein content and the presence of functional groups on the surface, ESM can be easily converted to a high-performance electrode material. Finally, both ES and ESM are suitable for medical applications, as the former can be used as an inexpensive Ca<jats:sup>2+</jats:sup> source for the development of medications, particles for drug delivery, organic matrix/mineral nanocomposites as potential tissue scaffolds, food supplements and the latter for the treatment of joint diseases, in reparative medicine and vascular graft producing. For the majority of the above-mentioned applications, the pretreatment of the eggshell waste is necessary. Among other options, the mechanochemical pretreatment has found an inevitable place. Since the publication of the last review paper devoted to the mechanochemical treatment of eggshell waste, a few new works have appeared, which are reviewed here to underline the sustainable character of the proposed methodology. The mechanochemical treatment of eggshell is capable of producing the nanoscale material which can be further used for bioceramics synthesis, dehalogenation processes, wastewater treatment, preparation of hydrophobic filters, lithium-ion batteries, dental materials, and in the building industry as cement.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • mineral
  • surface
  • cement
  • Lithium