People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bouten, Cvc Carlijn
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023How Smart are Smart Materials?citations
- 2020Optimization of Anti-kinking Designs for Vascular Grafts Based on Supramolecular Materialscitations
- 2020Imaging the In Vivo Degradation of Tissue Engineering Implants by Use of Supramolecular Radiopaque Biomaterialscitations
- 2019Macrophage-driven biomaterial degradation depends on scaffold microarchitecturecitations
- 2018Intrinsic cell stress is independent of organization in engineered cell sheetscitations
- 2017Biomaterial-driven in situ cardiovascular tissue engineering : a multi-disciplinary perspectivecitations
- 2017Porous scaffolds using dual electrospinning for in situ cardiovascular tissue engineeringcitations
- 2017Mechanically robust electrospun hydrogel scaffolds crosslinked via supramolecular interactionscitations
- 2015Hydrolytic and oxidative degradation of electrospun supramolecular biomaterialscitations
- 2015Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials:In vitro degradation pathwayscitations
- 2014Monocytic cells become less compressible but more deformable upon activationcitations
- 2013Mechanical analysis of ovine and pediatric pulmonary artery for heart valve stent designcitations
- 2003Finite element model of mechanically induced collagen fiber synthesis and degradation in the aortic valvecitations
Places of action
Organizations | Location | People |
---|
article
Macrophage-driven biomaterial degradation depends on scaffold microarchitecture
Abstract
<p>In situ tissue engineering is a technology in which non-cellular biomaterial scaffolds are implanted in order to induce local regeneration of replaced or damaged tissues. Degradable synthetic electrospun scaffolds are a versatile and promising class of biomaterials for variousin situ tissue engineering applications, such as cardiovascular replacements. Functionalin situ tissue regeneration depends on the balance between endogenous neo-tissue formation and scaffold degradation. Both these processes are driven by macrophages. Upon invasion into a scaffold, macrophages secrete reactive oxygen species (ROS) and hydrolytic enzymes, contributing to oxidative and enzymatic biomaterial degradation, respectively. This study aims to elucidate the effect of scaffold microarchitecture, i.e., μm-range fiber diameter and fiber alignment, on early macrophage-driven scaffold degradation. Electrospun poly-ε-caprolactone-bisurea (PCL-BU) scaffolds with either 2 or 6 μm (Ø) isotropic or anisotropic fibers were seeded with THP-1 derived human macrophages and culturedin vitro for 4 or 8 days. Our results revealed that macroph age-induced oxidative degradation in particular was dependent on scaffold microarchitecture, with the highest level of ROS-induced lipid peroxidation, NADPH oxidase gene expression and degradation in the 6 μm Ø anisotropic group. Whereas, biochemically polarized macrophages demonstrated a phenotype-specific degradative potential, the observed differences in macrophage degradative potential instigated by the scaffold microarchitecture could not be attributed to either distinct M1 or M2 polarization. This suggests that the scaffold microarchitecture uniquely affects macrophage-driven degradation. These findings emphasize the importance of considering the scaffold microarchitecture in the design of scaffolds forin situ tissue engineering applications and the tailoring of degradation kinetics thereof.</p>