Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yang, Yingjie

  • Google
  • 2
  • 15
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Insights into the reactivity and lithium plating mechanisms of ultra-thin metal oxide coatings for anode-free solid-state lithium metal batteries3citations
  • 2023Mechanical properties of Al<sub>2</sub>O<sub>3</sub>–LaPO<sub>4</sub> composites with eutectic microstructure produced by flash sinteringcitations

Places of action

Chart of shared publication
Counihan, Michael J.
1 / 1 shared
Zagorac, Teodora
1 / 1 shared
Pathak, Rajesh
1 / 1 shared
Mane, Anil U.
1 / 2 shared
Burns, Meghan E.
1 / 1 shared
Tepavcevic, Sanja
1 / 1 shared
Elam, Jeffrey W.
1 / 3 shared
Klie, Robert F.
1 / 3 shared
Cabana, Jordi
1 / 9 shared
Connell, Justin G.
1 / 1 shared
Hanley, Luke
1 / 2 shared
Kim, Taewoo
1 / 2 shared
Mecartney, Martha L.
1 / 1 shared
Motley, Nadjia B.
1 / 1 shared
Mumm, Daniel
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Counihan, Michael J.
  • Zagorac, Teodora
  • Pathak, Rajesh
  • Mane, Anil U.
  • Burns, Meghan E.
  • Tepavcevic, Sanja
  • Elam, Jeffrey W.
  • Klie, Robert F.
  • Cabana, Jordi
  • Connell, Justin G.
  • Hanley, Luke
  • Kim, Taewoo
  • Mecartney, Martha L.
  • Motley, Nadjia B.
  • Mumm, Daniel
OrganizationsLocationPeople

article

Insights into the reactivity and lithium plating mechanisms of ultra-thin metal oxide coatings for anode-free solid-state lithium metal batteries

  • Counihan, Michael J.
  • Zagorac, Teodora
  • Pathak, Rajesh
  • Mane, Anil U.
  • Burns, Meghan E.
  • Tepavcevic, Sanja
  • Yang, Yingjie
  • Elam, Jeffrey W.
  • Klie, Robert F.
  • Cabana, Jordi
  • Connell, Justin G.
  • Hanley, Luke
  • Kim, Taewoo
Abstract

<jats:p>Solid-state batteries (SSBs) in an “anode-free” cell format using lithium metal anodes are the best candidates for high energy density battery applications. However, low lithium metal Coulombic efficiency and charge loss due to solid electrolyte interphase (SEI) formation severely limit the cycle life of anode-free SSBs. Here, we explore ultra-thin (5–20 nm) Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> and ZnO coatings deposited by atomic layer deposition (ALD) on copper electrodes for anode-free cells with a solid polymer electrolyte. Voltammetry shows that lithium inventory loss from SEI formation is reduced over 50% with Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>@Cu electrodes, but these electrodes experience orders of magnitude higher interface resistances than bare Cu and ZnO@Cu electrodes due to low ionic and electronic conductivities. The electrochemical differences are reflected in XPS, where Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> undergoes a self-limiting lithiation reaction with Li<jats:sup>0</jats:sup>, while ZnO reacts completely with Li<jats:sup>0</jats:sup> to form LiZn and Li<jats:sub>2</jats:sub>O. These chemical differences result in higher and lower lithium plating nucleation overpotentials for Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> (up to 220 mV) and ZnO (down to 15 mV) coatings, respectively, relative to uncoated Cu electrodes (35 mV). ToF-SIMS reveals lithium plating underneath a Li<jats:sub>y</jats:sub>AlO<jats:sub>x</jats:sub> coating and through emergent defects and pinholes with Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>@Cu electrodes, while it plates exclusively on top of converted ZnO@Cu electrodes. SEM corroborates these mechanisms, showing sparse coverage of isolated Li clusters plated with Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>@Cu electrodes, while Cu and ZnO@Cu grow more dense and interconnected deposits. Despite both coatings improving different aspects of anode-free battery design, unmodified Cu electrodes show higher Coulombic efficiencies (∼77%) than Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>@Cu (up to 70%) and ZnO@Cu (up to 75%) electrodes. Increasing Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thickness decreases the practical current density compared to unmodified Cu (30 µA/cm<jats:sup>2</jats:sup>), but increasing ZnO thicknesses can double or triple this value. These (electro)chemical and morphological observations suggest two mechanisms: less-reactive metal oxides develop lithium ion conductivity through their structure to plate lithium underneath, while more-reactive metal oxides undergo full reduction and conversion with lithium plating above the coating. This fundamental research opens future work to leverage these mechanisms and explore other materials for high-efficiency anode-free SSBs.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • cluster
  • polymer
  • energy density
  • scanning electron microscopy
  • x-ray photoelectron spectroscopy
  • reactive
  • laser emission spectroscopy
  • copper
  • defect
  • Lithium
  • current density
  • selective ion monitoring
  • atomic layer deposition
  • voltammetry