People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oliveira, Ana L.
Universidade Católica Portuguesa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2022Adenosine-loaded silk fibroin aerogel particles for wound healing
- 2022Opening new avenues for bioceramicscitations
- 2021New prospects in skin regeneration and repair using nanophased hydroxyapatite embedded in collagen nanofiberscitations
- 2021High efficient strategy for the production of hydroxyapatite/silk sericin nanocompositescitations
- 2020Hydroxyapatite/sericin compositescitations
- 2020High efficient strategy for the production of hydroxyapatite/silk sericin nanocomposites
- 2020Hydroxyapatite/sericin composites:a simple synthesis route under near-physiological conditions of temperature and pH and preliminary study of the effect of sericin on the biomineralization processcitations
- 2019Sterile and dual-porous aerogels scaffolds obtained through a multistep supercritical CO2-based approachcitations
- 2019Sterile and dual-porous aerogels scaffolds obtained through a multistep supercritical CO 2 -based approachcitations
- 2018Combinatory approach for developing silk fibroin scaffolds for cartilage regenerationcitations
- 2017Modulating cell adhesion to polybutylene succinate biotextile constructs for tissue engineering applicationscitations
- 2017Silk-based anisotropical 3D biotextiles for bone regenerationcitations
- 2017Core-shell silk hydrogels with spatially tuned conformations as drug-delivery systemcitations
- 2016Combinatory approach for developing silk fibroin-based scaffolds with hierarchical porosity and enhanced performance for cartilage tissue engineering applications
- 2013Evaluation of novel 3D architectures based on knitting technologies for engineering biological tissues
- 2012Aligned silk-based 3-D architectures for contact guidance in tissue engineeringcitations
- 2009Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffoldscitations
- 2005Study of the influence of β-radiation on the properties and mineralization of different starch-based biomaterialscitations
- 2004Pre-mineralisation of starch/polycrapolactone bone tissue engineering scaffolds by a calcium-silicate-based processcitations
- 2003Biomimetic coating of starch based polymeric foams produced by a calcium silicate based methodologycitations
- 2003Bi-composite sandwich moldingscitations
- 2003Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apatite coating in compact and porous polymeric structurescitations
- 2001Sodium silicate gel induced self-mineralization of different compact and porous polymeric structurescitations
Places of action
Organizations | Location | People |
---|
article
Combinatory approach for developing silk fibroin-based scaffolds with hierarchical porosity and enhanced performance for cartilage tissue engineering applications
Abstract
Introduction: The combination of several processing technologies can open the possibility for producing scaffolds with superior performance for tissue engineering (TE) applications. Hydrogels are structurally similar to the natural extracellular matrix microenvironment presenting high elasticity and resistance to compression forces. They have been extensively used in biomedical devices fabrication and for TE applications, including for cartilage defects repair[1]. Recently, it was found that proteins like silk fibroin (SF), presenting tyrosine groups can be used to prepare fast formed hydrogels with controlled gelation properties, via an enzyme-mediated cross-linking reaction using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2)[2],[3]. Moreover, the high versatility, processability and tailored mechanical properties of SF, make this natural polymer attractive for the development of innovative scaffolding strategies for cartilage TE applications[4],[5]. Materials and Methods: The present work proposes a novel route for developing SF-based scaffolds derived from high-concentrated SF (16wt%) enzymatically cross-linked by a HRP/H2O2 complex. The combination of salt-leaching and freeze-drying methodologies was used to prepare macro/microporous SF scaffolds with an interconnected structure and specific features regarding biodegradation and mechanical properties (Fig. 1a). The scaffolds morphology and porosity were analyzed by SEM and micro-CT. The mechanical properties (Instron) and protein conformation (FTIR, XRD) were also assessed. In order to evaluate the scaffolds structural integrity, swelling ratio and degradation profile studies were performed for a period of 30 day. This work also aims to evaluate the in vitro chondrogenic differentiation response by culturing human adipose derived stem cells (hASCs) over 21 days in basal and chondrogenic conditions. Cell behaviour in the presence of the macro/microporous structures will be evaluated through different quantitative (Live/Dead, DNA, GAGs, RT PCR) and ...