People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Den Berg, Albert
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (40/40 displayed)
- 2024Alternative nano-lithographic tools for shell-isolated nanoparticle enhanced Raman spectroscopy substrates
- 2023Fabrication of homogeneous shell-isolated sers substrates for catalytic applications
- 2021Monitoring contractile cardiomyocytes via impedance using multipurpose thin film ruthenium oxide electrodescitations
- 2020Using 3D-printing to fabricate a microfluidic vascular model to mimic arterial thrombosis
- 2020Plasmonic Nanocrystal Arrays on Photonic Crystals with Tailored Optical Resonancescitations
- 2017Sensing oxygen at the millisecond time-scale using an ultra-microelectrode array (UMEA)citations
- 2017Synchrotron SAXS and Impedance Spectroscopy Unveil Nanostructure Variations in Redox-Responsive Porous Membranes from Poly(ferrocenylsilane) Poly(ionic liquid)scitations
- 2017Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography datacitations
- 2016Molecularly Imprinted Polymer-Carbon Nanotube based Cotinine sensorcitations
- 2016Effects of varying degrees of surface strain anisotropies on endothelial cells
- 2016Endothelial cell alignment as a result of anisotropic strain and flow induced shear stress combinationscitations
- 2015Functionalization and bioimmobilization of silicon surfaces with Si-N bonded monolayercitations
- 2014Modeling and simulations of the amplitude-frequency response of transmission line type resonators filled with lossy dielectric fluidscitations
- 2014The contribution of plasmon-enhanced photoluminescence to the SERS backgroundcitations
- 2014A novel side electrode configuration integrated in fused silica microsystems for synchronous optical and electrical spectroscopycitations
- 2014Stub resonators for online monitoring early stages of corrosioncitations
- 2013Large area metal nanowire arrays with submicron pitch and tunable sub-20 nm nanogaps
- 2013Large area metal nanowire arrays with tunable sub-20nm nanogapscitations
- 2012Fabrication of cell container arrays with overlaid surface topographiescitations
- 2011Thermoforming of film-based biomedical microdevicescitations
- 2010A lab-on-a-chip system integrated with subwavelength periodic patterned metal surfaces for sers-based molecular identification biosensing
- 2009Silicon and Glass Micromachining
- 2008AC field effect flow control of EOF in complex microfluidic systems with integrated electrodes
- 2007Integrated electrochemical sensor array for on-line monitoring of yeast fermentationscitations
- 2007Simple technique for direct patterning of nanowires using a nanoslit shadow-maskcitations
- 2006Fabrication of microfluidic networks with integrated electrodescitations
- 2006Monitoring of yeast cell concentration using a micromachnined impedance sensorcitations
- 2005Technologies for nanofluidic systems:top-down vs. bottom-up - a reviewcitations
- 2005Monitoring of yeast cell concentration using a micromachined impedance sensor
- 2005Catalytic hydrogen peroxide decomposition La1-xSrxCoO3-δ perovskite oxidescitations
- 2004The potential of autofluorescence for the detection of single living cells for label-free cell sorting in microfluidic systemscitations
- 20041-D nanochannels fabricated in polyimidecitations
- 2003A new technique for accurately defined deposition of catalyst thin films in deep flow channels of high-temperature gas microreactorscitations
- 2003A low hydraulic capacitance pressure sensor for integration with a micro viscosity detectorcitations
- 2002Integrated Micro- and Nanofluidics: Silicon Revisitedcitations
- 2001Local anodic bonding of Kovar to Pyrex aimed at high-pressure, solvent-resistant microfluidic connectionscitations
- 2001Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips with integrated conductivity sensorscitations
- 2001Failure mechanisms of pressurized microchannels, model, and experimentscitations
- 2001Selective Wafer Bonding by Surface Roughness Controlcitations
- 2000Failure mechanisms of pressurized microchannels, model and experiments
Places of action
Organizations | Location | People |
---|
document
Effects of varying degrees of surface strain anisotropies on endothelial cells
Abstract
Introduction: Cyclic strain is well known to affect cell behavior. It is also known that isotropic and anisotropic strain can affect cells differently[1]. While in-vivo cells experience varying degrees of anisotropy (d.o.a.), in-vitro anisotropic strain studies have mostly focused on uniaxial strains. In order to create a better understanding of cellular behaviour under physiological strain conditions, the response of cells to strains with varying d.o.a. should be investigated. In this study, we determined the effects of varying d.o.a. on human umbilical vein endothelial cells (HUVECs) using a newly developed device. Studies like this can be used to determine and optimize the mechanical stimulation needed to elicit physiological cellular responses, and are beneficial for applications such as tissue engineering and organs-on-chip systems.Materials and Methods: The device, which is a modified version of our previously developed device to apply surface strains in combination with flow induced shear stresses to cells[2], has 100 units producing various anisotropic strains (1a). This is achieved by stretching a polydimethylsiloxane (PDMS) membrane over circular pillars into surrounding ellipse trenches. The dimensions of the ellipse determine the d.o.a., which is defined as the ratio of maximum to minimum principal surface strains. Each condition contains four replicates. The presence of fluid flow channels allows for the determination of combined effects of anisotropic strains and flow induced shear stresses, which is currently under investigation. Computational models were used to aid in the device design (1b) and the strains were empirically characterized by tracking beads embedded in the membrane (1c). HUVECs were seeded on the device, allowed to attach for 18 hours and then stained with CellTracker Green CMFDA. The cells were mechanically stimulated (maximum principal strain up to 10% at 1 Hz, sine strain profile) and imaged after 0, 6 and 19 hours of stimulation. The cells were then fixed and stained with Alexa 488 Phalloidin (actin stain) and DAPI (nuclear stain) and imaged again. Images were analyzed using CellProfiler to detect the effects of the mechanical stimuli on the cells.Results: The models and empirical measurements showed that strains with varying d.o.a. could be generated on the device. Maximum principal strains up to ~20% could be achieved. HUVECs were found to become elongated and align along the minimum principal strain direction. Alignment was visible after 6 hours of stimulation and increased with longer stimulation times. Apart from that, an increase in d.o.a. resulted in increased cell alignment (2a-c).Conclusions: HUVECs respond to various d.o.a. With an increasing d.o.a., the cells show an increasing alignment response. The variations in response of cells highlight the need to study the effects of strains of varying d.o.a. on cells. Our device permits such experiments with an increased throughput, which makes it an important tool to better understand these mechanobiological principles.