Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hidding, Jan

  • Google
  • 2
  • 5
  • 5

University of Groningen

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Spin-orbit torques and photocurrents in 2D materialscitations
  • 2023The Role of Self-Torques in Transition Metal Dichalcogenide/Ferromagnet Bilayers5citations

Places of action

Chart of shared publication
Mërtiri, Klaiv
1 / 1 shared
Liang, Ce
1 / 2 shared
Park, Jiwoong
1 / 4 shared
Guimarães, Marcos H. D.
1 / 11 shared
Mujid, Fauzia
1 / 3 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Mërtiri, Klaiv
  • Liang, Ce
  • Park, Jiwoong
  • Guimarães, Marcos H. D.
  • Mujid, Fauzia
OrganizationsLocationPeople

thesis

Spin-orbit torques and photocurrents in 2D materials

  • Hidding, Jan
Abstract

While conventional electronics rely on the electron charge as information carrier, using another intrinsic property of the electron, its spin, offers promising ways to further improve information storage technologies. However, the key hurdle lies in gaining precise control over the electron spin. Currently, both electrical and optical methods are being explored to achieve this control.<br/><br/>This thesis delves into the realm of spintronics and optoelectronics, focusing on the effects observed in layered two-dimensional (2D) materials called transition metal dichalcogenides (TMDs). These materials are particularly well-suited for this purpose due to their direct bandgap in atomically thin layers and strong spin-orbit coupling, which is advantageous for spintronic and optospintronic effects.<br/><br/>The initial section of the thesis addresses spintronic effects, specifically the spin-orbit torque (SOT) in TMD/ferromagnetic bilayers. Notably, our study on WSe2/permalloy devices reveals a lack of clear dependence on WSe2 thickness for SOTs, suggesting an interfacial origin. Additionally, we observe the presence of SOTs in a device with a single ferromagnetic layer, highlighting the importance of studying reference samples for accurate determination of the SOT strength.<br/><br/>Turning to the optoelectronic aspect of TMDs, our exploration uncovers that the Schottky barrier at the MoSe2-metallic contacts interface induces additional polarization-dependent photocurrents. Furthermore, we demonstrate that modifying the crystal structure of MoTe2 locally enhances the optoelectronic performance of TMDs based devices.<br/><br/>This thesis provides important steps for the integration of 2D materials in future spintronic and optoelectronic devices.

Topics
  • impedance spectroscopy
  • strength
  • layered
  • two-dimensional
  • interfacial