Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rousseva, Sylvia

  • Google
  • 7
  • 33
  • 348

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2022Investigating the dielectric properties and exciton diffusion in C70 derivatives5citations
  • 2022Investigating the dielectric properties and exciton diffusion in C 70 derivatives5citations
  • 2022Organic semiconductors with increased dielectric constantscitations
  • 2020Reaching a Double-Digit Dielectric Constant with Fullerene Derivatives16citations
  • 2020Reaching a Double-Digit Dielectric Constant with Fullerene Derivatives16citations
  • 2020N-type organic thermoelectrics:demonstration of ZT > 0.3153citations
  • 2020N-type organic thermoelectrics153citations

Places of action

Chart of shared publication
Pshenichnikov, Maxim S.
2 / 5 shared
Kooij, Felien S. Van
2 / 2 shared
Birudula, Srikanth
2 / 3 shared
Kuevda, Alexey V.
2 / 2 shared
Raul, Benedito A. L.
2 / 2 shared
Hummelen, Jan
3 / 10 shared
Chiechi, Ryan C.
2 / 13 shared
Van Kooij, Felien S.
2 / 2 shared
Hummelen, Jan C.
3 / 18 shared
Douvogianni, Evgenia
2 / 4 shared
Doting, Eva L.
2 / 2 shared
Den Besten, Hugo
2 / 2 shared
Koster, Lja
2 / 32 shared
Doumon, Nutifafa Y.
1 / 3 shared
Koster, L. Jan Anton
2 / 23 shared
Baran, Derya
2 / 11 shared
Sami, Selim
1 / 4 shared
Havenith, Remco W. A.
2 / 22 shared
Dong, Jingjin
2 / 15 shared
Qiu, Xinkai
2 / 9 shared
Alessandri, Riccardo
1 / 3 shared
Marrink, Siewert J.
1 / 4 shared
Qiu, Li
1 / 6 shared
Anthopoulos, Thomas D.
2 / 33 shared
Nugraha, Mohamad I.
2 / 3 shared
Klasen, Nathalie
2 / 2 shared
Caironi, Mario
2 / 15 shared
Portale, Giuseppe
1 / 33 shared
Barker, Alex J.
2 / 7 shared
Liu, Jian
2 / 26 shared
Marrink, Siewert
1 / 3 shared
Portale, Giuseppe, A.
1 / 57 shared
Zee, Bas Van Der
1 / 2 shared
Chart of publication period
2022
2020

Co-Authors (by relevance)

  • Pshenichnikov, Maxim S.
  • Kooij, Felien S. Van
  • Birudula, Srikanth
  • Kuevda, Alexey V.
  • Raul, Benedito A. L.
  • Hummelen, Jan
  • Chiechi, Ryan C.
  • Van Kooij, Felien S.
  • Hummelen, Jan C.
  • Douvogianni, Evgenia
  • Doting, Eva L.
  • Den Besten, Hugo
  • Koster, Lja
  • Doumon, Nutifafa Y.
  • Koster, L. Jan Anton
  • Baran, Derya
  • Sami, Selim
  • Havenith, Remco W. A.
  • Dong, Jingjin
  • Qiu, Xinkai
  • Alessandri, Riccardo
  • Marrink, Siewert J.
  • Qiu, Li
  • Anthopoulos, Thomas D.
  • Nugraha, Mohamad I.
  • Klasen, Nathalie
  • Caironi, Mario
  • Portale, Giuseppe
  • Barker, Alex J.
  • Liu, Jian
  • Marrink, Siewert
  • Portale, Giuseppe, A.
  • Zee, Bas Van Der
OrganizationsLocationPeople

thesis

Organic semiconductors with increased dielectric constants

  • Rousseva, Sylvia
Abstract

Organic semiconductors are a versatile class of materials whose functionality can be tuned extensively with the use of synthetic organic chemistry techniques. Over the years, this has led to the development of organic light emitting diodes, organic solar cells, organic thermoelectric generators and organic field effect transistors, amongst other organic electronic devices. For organic photovoltaic (OPV) devices, a key challenge to developing high performance solar cells has been overcoming the exciton binding energy. The exciton binding energy keeps the photogenerated electrons (negative charge) and holes (positive charge) attracted to one another and hinders the generation of electrical current from the OPV device. Previous research has suggested that one way to tune the exciton binding energy in organic materials could be to change the dielectric constant. The dielectric constant is a material property that describes the ability of a material to screen charges from one another; in theory if the dielectric constant is increased, the exciton binding energy will decrease.<br/><br/>At the University of Groningen, various synthetic approaches have been employed to increase the dielectric constant of organic semiconductors. Of these approaches, the incorporation of polar ethylene glycol (EG) chains into the structure of known organic materials has shown particular promise. This thesis builds on this previous work with a focus on the fundamental aspects of how the EG chains affect the optoelectronic properties. In this way, the aim is to provide insight to the interplay between the dielectric constant and the functionality of organic semiconductors.

Topics
  • impedance spectroscopy
  • theory
  • dielectric constant
  • semiconductor