Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Johansson, Christer

  • Google
  • 9
  • 57
  • 525

RISE Research Institutes of Sweden

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024CF/PEEK skins assembly by induction welding for thermoplastic composite sandwich panels9citations
  • 2024Manufacturing of thermoplastic composite sandwich panels using induction welding under vacuum6citations
  • 2023Characterization of Magnetic Susceptor Heating Rate Due to Hysteresis Losses in Thermoplastic Welding1citations
  • 2022High magnetoelectric coupling of Metglas and P(VDF-TrFE) laminates15citations
  • 2019The Puzzle of Danishcitations
  • 2019Has she sent or lit an email? Preliminary results of a Danish and Norwegian categorical perception studycitations
  • 2018Cast iron components with intelligence1citations
  • 2018Dipolar-coupled moment correlations in clusters of magnetic nanoparticles39citations
  • 2007New materials for micro-scale sensors and actuators:an engineering review454citations

Places of action

Chart of shared publication
Dubé, Martine
2 / 3 shared
Martin, Romain G.
1 / 1 shared
Tavares, Jason R.
2 / 2 shared
Tavares, J. R.
1 / 1 shared
Martin, R. G.
1 / 1 shared
Dubé, M.
1 / 1 shared
Figueiredo, Martin
1 / 1 shared
Martin, Romain
1 / 1 shared
Dąbrowska, Ewa
1 / 1 shared
Bleses, Dorthe
2 / 2 shared
Ishkhanyan, Byurakn
2 / 2 shared
Dideriksen, Christina Rejkjær
1 / 1 shared
Trecca, Fabio
2 / 3 shared
Højen, Anders
2 / 2 shared
Christiansen, Morten H.
2 / 3 shared
Tylén, Kristian
2 / 2 shared
Fusaroli, Riccardo
1 / 1 shared
Carlsson, Raul
1 / 1 shared
Elmquist, Lennart
1 / 11 shared
Moerland, Cp Christian
1 / 1 shared
Fock, Jeppe
1 / 9 shared
González-Alonso, D.
1 / 1 shared
Honecker, Dirk
1 / 28 shared
Frandsen, C.
1 / 2 shared
Fernández-Díaz, Mt
1 / 1 shared
Costo, R.
1 / 2 shared
Bogart, Lk
1 / 7 shared
Bender, Philipp Florian
1 / 6 shared
Fernández Barquín, L.
1 / 2 shared
Gavilán, H.
1 / 1 shared
Wetterskog, Erik
1 / 7 shared
Posth, O.
1 / 1 shared
Szczerba, W.
1 / 1 shared
Chart of publication period
2024
2023
2022
2019
2018
2007

Co-Authors (by relevance)

  • Dubé, Martine
  • Martin, Romain G.
  • Tavares, Jason R.
  • Tavares, J. R.
  • Martin, R. G.
  • Dubé, M.
  • Figueiredo, Martin
  • Martin, Romain
  • Dąbrowska, Ewa
  • Bleses, Dorthe
  • Ishkhanyan, Byurakn
  • Dideriksen, Christina Rejkjær
  • Trecca, Fabio
  • Højen, Anders
  • Christiansen, Morten H.
  • Tylén, Kristian
  • Fusaroli, Riccardo
  • Carlsson, Raul
  • Elmquist, Lennart
  • Moerland, Cp Christian
  • Fock, Jeppe
  • González-Alonso, D.
  • Honecker, Dirk
  • Frandsen, C.
  • Fernández-Díaz, Mt
  • Costo, R.
  • Bogart, Lk
  • Bender, Philipp Florian
  • Fernández Barquín, L.
  • Gavilán, H.
  • Wetterskog, Erik
  • Posth, O.
  • Szczerba, W.
OrganizationsLocationPeople

article

Characterization of Magnetic Susceptor Heating Rate Due to Hysteresis Losses in Thermoplastic Welding

  • Dubé, Martine
  • Johansson, Christer
  • Figueiredo, Martin
  • Martin, Romain
  • Tavares, Jason R.
Abstract

<jats:p>Welding techniques are emerging as a new method to join thermoplastic composite parts. They present a fast and efficient alternative to adhesives and mechanical fasteners. Induction welding is a welding technique that relies on the application of an oscillating magnetic field on the joining interface, where a material called a magnetic susceptor generates heat by interacting with the applied magnetic field. In this work, susceptors relying on magnetic hysteresis losses made of polyetherimide (PEI) and nickel (Ni) particles are investigated with varying Ni concentration. The materials are mixed using an internal mixer and pressed to form films approximately 500μm thick. To characterize the heating rates of the susceptor materials, samples are placed on an induction coil – a water-cooled copper tube in which AC current (frequency 388kHz), generates an alternating magnetic field – and the temperature evolution is measured using a thermal camera. An increasing concentration of Ni particles results in increased heating rate and maximum temperature reached by the samples. The temperature-time experimental curves are compared with theoretical heating curves to verify if the model can be used to predict the temperature evolution at the joining interface during a welding process.</jats:p>

Topics
  • impedance spectroscopy
  • nickel
  • composite
  • copper
  • thermoplastic
  • joining