People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Marinosci, Vanessa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Investigating the influence of additive polymer molecular weights on the mechanical performance of recycled thermoplastic composites
- 2024Direct observation of the fracture behavior of the polyether ketone ketone (PEKK) spherulitescitations
- 2023Designer Adhesives for Tough and Durable Interfaces in High-Performance Ti-Carbon PEKK Hybrid Jointscitations
- 2023Adhesion and mechanical performance of co-consolidated titanium-thermoplastic composite joints
- 2022Characterization of the water–titanium interaction and its effect on the adhesion of titanium-C/PEKK jointscitations
- 2022The role of process induced polymer morphology on the fracture toughness of titanium-PEKK interfacescitations
- 2021Effect of grit-blasting on the fracture toughness of hybrid titanium-thermoplastic composite jointscitations
Places of action
Organizations | Location | People |
---|
document
Adhesion and mechanical performance of co-consolidated titanium-thermoplastic composite joints
Abstract
Co-consolidation is a technology to manufacture metal-thermoplastic composite (TPC) joints. With this technology, metal inserts can be integrated in a composite structure during a standard consolidation or forming process. By heating up the two materials, the thermoplastic resin melts and acts as an adhesive, thereby achieving composite consolidation and bonding to the metal simultaneously. Thus, the co-consolidation represents a time and cost-efficient joining alternative to conventional fastening and adhesive bonding. The implementation of the co-consolidation technology requires developing manufacturing and processing guidelines which ensure reliable metal-TPC joints. Therefore, the objective of this research is to understand, describe and optimize the adhesion mechanisms between metal and TPCs, more specifically between Ti6Al4V and C/PEKK composites. The results show that the adhesion between Ti6Al4V and PEKK relies on physical interactions. Pretreating the titanium surface using grit-blasting in combination with a novel silane-polydopamine coating is essential to achieve a stable and tough Ti6Al4V-C/PEKK interface. This fundamental understanding of the interface led to the development of a demonstrator of which the geometry is inspired by a wing spoiler, where a metal lug is joined to a composite panel. This geometry allowed to explore a co-consolidation manufacturing route and evaluate the mechanical performance of a Ti6Al4V-C/PEKK part.