Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Abel, Julianna M.

  • Google
  • 1
  • 3
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Dynamic countermeasure fabrics for post-spaceflight orthostatic intolerance14citations

Places of action

Chart of shared publication
Eschen, Kevin P.
1 / 1 shared
Ross, Amy J.
1 / 1 shared
Granberry, Rachael M.
1 / 3 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Eschen, Kevin P.
  • Ross, Amy J.
  • Granberry, Rachael M.
OrganizationsLocationPeople

article

Dynamic countermeasure fabrics for post-spaceflight orthostatic intolerance

  • Abel, Julianna M.
  • Eschen, Kevin P.
  • Ross, Amy J.
  • Granberry, Rachael M.
Abstract

<p>INTRODUCTION: Aerospace orthostatic intolerance garments (OIG) have historically been pneumatic (e.g., NASA's antigravity suit), an approach that inhibits mobility and requires connection to an air supply. Elastic compression garments, an alternative technology, are difficult to don/doffand cannot be worn in a noncompressive state, resulting in discomfort and usability challenges. This research evaluates a novel technology-contractile shape memory alloy (SMA) knitted actuators-that can enable low-profile, dynamic compression for an aerospace OIG. METHODS: To characterize the functional capabilities of SMA knitted actuators, displacement control testing was conducted on 10 actuator samples with a range of geometric design parameters. Inactive (FI) and actuated forces (FA) were observed by repeatedly thermally cycling each sample at 0%, 15%, 30%, and 45% structural strain. Compression capabilities were approximated using medical compression hosiery standards and anthropometric data from a representative aerospace population (ANSUR 2012). RESULTS: Dynamic compression predictions reached 52 mmHg (single layer fabric) and 105 mmHg (double layer fabric) at the ankle. Low, inactive pressures (p, 20 mmHg) demonstrate that compression is controllable and can be dynamically increased upon actuation up to 33 mmHg in a single layer system and up to 67 mmHg in a double layer system. DISCUSSION: The results highlight the potential of SMA knitted actuators to enable low-profile, dynamic compression garments that can reach medically therapeutic pressures on an aerospace population to counteract OI symptoms. In addition to astronautic applications, this technology demonstrates widespread terrestrial medical and high-performance aircraft applicability.</p>

Topics
  • impedance spectroscopy
  • mobility