Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zanini, Maurício Matté

  • Google
  • 1
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Diatomite filler for resin composites application – A new approach for materials improvement1citations

Places of action

Chart of shared publication
Consani, Simonides
1 / 3 shared
Lima, Isabela
1 / 1 shared
Guarda, Mauricio Bottene
1 / 1 shared
Correr, Américo Bortolazzo
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Consani, Simonides
  • Lima, Isabela
  • Guarda, Mauricio Bottene
  • Correr, Américo Bortolazzo
OrganizationsLocationPeople

article

Diatomite filler for resin composites application – A new approach for materials improvement

  • Consani, Simonides
  • Lima, Isabela
  • Guarda, Mauricio Bottene
  • Correr, Américo Bortolazzo
  • Zanini, Maurício Matté
Abstract

<jats:p>The aim of this study was to evaluate physical-mechanical properties, degree of conversion, and chemical stability of a nanohybrid composite containing diatomite as filler. Degree of conversion (DC%) of diatomite-containing composite (Zirconfill®) was performed using FTIR immediately, and 1-, and 7-days post-curing. SEM was conducted to evaluate the surface of the resin after curing and measure particles size. Also, elemental characterization was performed to verify the major components of the composite through EDS. Mechanical characterization using 3-point bending test was performed prior and after thermo-cycling (10000 cycles) (n=10). Knoop microhardness (KHN) was used to characterize mechanical stability after chemical solutions aggression (water, juice, coffee, coke) up to 28 days (n=10/solution). After data normality evaluation using Shapiro-Wilk, One-way ANOVA and Tukey post hoc were conducted to verify differences between groups for DC% and mechanical properties. Split-plot ANOVA was used to compare groups for microhardness characterization (α=0.05). Immediate DC was 60% and significantly increased up to 80% at 7 days (p&lt;0.05). Flexural strength of the diatomite-containing composite was 136.2 (23.7) MPa and significantly decreased to 75.1 (10.2) as a result of thermo-cycling. The flexural modulus was not significantly affected by the thermo-cycling (p&gt;0.05). All the dietary solutions affected the KHN of the composite up to 21 days. For 28 days, the KHN evidenced and stabilization regarding all the solutions. Diatomite-containing composites present good degree of conversion and relevant mechanical properties and demonstrate time-dependent stability against chemical degradation.</jats:p>

Topics
  • surface
  • scanning electron microscopy
  • strength
  • composite
  • chemical stability
  • flexural strength
  • bending flexural test
  • Energy-dispersive X-ray spectroscopy
  • resin
  • curing