Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Medeiros, Rodolfo

  • Google
  • 1
  • 5
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Lanthanum Strontium Cobalt Ferrite (LSCF) perovskites by Sol-Gel Method for Potential Application in Solid Oxide Fuel Cells (SOFC)2citations

Places of action

Chart of shared publication
Felipe, Lívia
1 / 1 shared
Araújo, Tomaz Rodrigues De
1 / 1 shared
Da Silva Dias, Luís Paulo
1 / 1 shared
Silva, A. R.
1 / 8 shared
Pereira De Figueredo, Gilvan
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Felipe, Lívia
  • Araújo, Tomaz Rodrigues De
  • Da Silva Dias, Luís Paulo
  • Silva, A. R.
  • Pereira De Figueredo, Gilvan
OrganizationsLocationPeople

article

Lanthanum Strontium Cobalt Ferrite (LSCF) perovskites by Sol-Gel Method for Potential Application in Solid Oxide Fuel Cells (SOFC)

  • Felipe, Lívia
  • Araújo, Tomaz Rodrigues De
  • Medeiros, Rodolfo
  • Da Silva Dias, Luís Paulo
  • Silva, A. R.
  • Pereira De Figueredo, Gilvan
Abstract

<jats:p>Fuel cells are one of the most efficient and effective solutions to environmental problems and high energy demand. They are devices which change chemical energy into electrochemical energy, allowing much higher efficiency than conventional thermomechanical conversion methods. Lanthanum Strontium Cobalt Ferrite (LSCF) perovskites have been widely studied for application as cathodes in solid oxide fuel cells (SOFC) due to their high electrical conductivity, high thermal and chemical stability, low difference in thermal expansion coefficient, and physico-chemical compatibility with the other cells components. The aim of this work was to synthesize perovskitas type La0.7Sr0.3Co0.5Fe0.5O3 by sol-gel method and evaluate the potential for application as a cathode for fuel cell. The results obtained by X-ray powder diffraction (XRD) indicate that the sol-gel method calcined at 900ºC obtained an amount of the perovskite phase above 95%. The Field Emission Gun-Scanning Electron Microscope (FEG-SEM) images of LSCF film produced with 4 layers showed a better quality. Thus, the results obtained by XRD and FEG-SEM, indicate that the sol-gel method calcined at 900ºC has a potential application as cathode in solid oxide fuel cells.</jats:p>

Topics
  • perovskite
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • Strontium
  • chemical stability
  • thermal expansion
  • Lanthanum
  • cobalt
  • electrical conductivity