People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brancart, Joost
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Designing flexible and self-healing electronics using hybrid carbon black/nanoclay composites based on Diels-Alder dynamic covalent networkscitations
- 2024Diels-Alder Network Blends as Self-Healing Encapsulants for Liquid Metal-Based Stretchable Electronicscitations
- 2023Solid‐state crosslinkable, shape‐memory polyesters serving tissue engineeringcitations
- 2023Fast Self-Healing at Room Temperature in Diels–Alder Elastomerscitations
- 2023Assisted damage closure and healing in soft robots by shape memory alloy wirescitations
- 2023Vitrimeric shape memory polymer-based fingertips for adaptive graspingcitations
- 2023Effect of Secondary Particles on Self-Healing and Electromechanical Properties of Polymer Composites Based on Carbon Black and a Diels–Alder Networkcitations
- 2021Supramolecular self-healing sensor fiber composites for damage detection in piezoresistive electronic skin for soft robotscitations
- 2021The Influence of the Furan and Maleimide Stoichiometry on the Thermoreversible Diels–Alder Network Polymerizationcitations
- 2020Self-Healing Material Design and Optimization for Soft Robotic Applications
- 2019Diffusion- and Mobility-Controlled Self-Healing Polymer Networks with Dynamic Covalent Bondingcitations
- 2019Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substratescitations
- 2018The Effect of Vitrification on the Diels-Alder Reaction Kinetics
- 2017Towards the first developments of self-healing soft robotics
- 2011Self-healing property characterization of reversible thermoset coatings
Places of action
Organizations | Location | People |
---|
document
Self-Healing Material Design and Optimization for Soft Robotic Applications
Abstract
The Diels-Alder reaction between furan and maleimide is the most studied example of reversible covalent chemistries for creating self-healing materials. While scientific articles reporting the synthesis of new reversible polymer networks are numerous, accurate knowledge of the reaction kinetics and thermodynamics of the dynamically reversible equilibrium reaction and the structure and property development of derived stimuli-responsive materials are less widespread. The requirements for the material properties and behavior become more stringent when designing materials for dedicated applications, such as soft robotic structures. Optima need to be sought between reasonably fast reaction kinetics for fast and efficient damage healing at moderate temperatures and mechanical strength and structural stability on the other hand. Stress relaxation is desired to make materials tougher, relieving stress before defects can grow into cracks and ultimately lead to failure, while creep can’t be allowed. Recycling and reprocessing of materials are desirable from an ecological viewpoint, while the materials should also be able to withstand static and dynamic loading in a considerable range of environmental conditions. Accurate knowledge of the reaction kinetics and thermodynamics and an in-depth knowledge of structure-processing-property relations allow smart polymer network design with tailored stimuli-responsive behavior and use as self-healing materials for robotic applications.