Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Arshad, Hunain

  • Google
  • 2
  • 10
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Axial Load-carrying Capacity of Steel Tubed Concrete Short Columns Confined with Advanced FRP Composites12citations
  • 2019Impact Analysis of Water Quality on the Development of Construction Materials9citations

Places of action

Chart of shared publication
Shah, Syyed Adnan Raheel
2 / 5 shared
Waseem, Muhammad
2 / 6 shared
Farhan, Muhammad
1 / 6 shared
Khan, Mudasser Muneer
1 / 1 shared
Raza, Ali
1 / 13 shared
Adnan, Muhammad
1 / 10 shared
Khan, Nasir Mahmood
1 / 1 shared
Farid, Hamad
1 / 1 shared
Haq, Inzmam-Ul
1 / 1 shared
Shabbir, Rana Muhammad Farooq
1 / 1 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Shah, Syyed Adnan Raheel
  • Waseem, Muhammad
  • Farhan, Muhammad
  • Khan, Mudasser Muneer
  • Raza, Ali
  • Adnan, Muhammad
  • Khan, Nasir Mahmood
  • Farid, Hamad
  • Haq, Inzmam-Ul
  • Shabbir, Rana Muhammad Farooq
OrganizationsLocationPeople

article

Axial Load-carrying Capacity of Steel Tubed Concrete Short Columns Confined with Advanced FRP Composites

  • Shah, Syyed Adnan Raheel
  • Waseem, Muhammad
  • Arshad, Hunain
  • Farhan, Muhammad
  • Khan, Mudasser Muneer
  • Raza, Ali
Abstract

<jats:p>Fiber Reinforced Polymers (FRPs) have wide applications in the field of concrete construction due to their superior performance over conventional materials. This research focuses on the structural behavior of steel tube FRP jacket–confined concrete (STFC) columns under axial concentric loading and proposes a new empirical equation for predicting the axial load-carrying capacity of STFC columns having thickness of FRP-fabric ranging from 0.09 mm to 5.9 mm. A large database of 700 FRP-confined concrete specimens is developed with the detailed information of critical parameters, i.e. elastic modulus of FRPs (Ef), compressive strength of unconfined concrete (fc’o), diameter of specimen (D), height of specimen (H), total thickness of FRPs (N.tf), and the ultimate strength of confined concrete (fc’c). After the preliminary evaluation of constructed database, a new empirical model is proposed for the prediction of axial compressive strength of FRP-confined specimens using general regression analysis by minimizing the error functions such as root mean squared error (RMSE) and coefficient of determination (R2). The proposed FRP-confinement strength model presented higher accuracy as compared with previously proposed models. Finally, an equation is proposed for the predictions of axial load carrying capacity of STFC columns. For the validation of proposed equation, an extensive parametric study is performed using the proposed nonlinear finite element model (FEM). The FEM is calibrated using the load-deflection results of STFC columns from literature. A close agreement was observed between the predictions of proposed finite element model and proposed capacity equation.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • strength
  • steel
  • composite