Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Seyedghayem, Mir Mohammad

  • Google
  • 1
  • 4
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Proton Exchange Membrane Fuel Cells: Focused on Organic-Inorganic Nanocomposite Membranes3citations

Places of action

Chart of shared publication
Asgari, Mehrdad
1 / 4 shared
Jalali, Soheil
1 / 1 shared
Venkatramani, Aishwarya
1 / 1 shared
Saboor, Fahimeh Hooriabad
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Asgari, Mehrdad
  • Jalali, Soheil
  • Venkatramani, Aishwarya
  • Saboor, Fahimeh Hooriabad
OrganizationsLocationPeople

article

Proton Exchange Membrane Fuel Cells: Focused on Organic-Inorganic Nanocomposite Membranes

  • Asgari, Mehrdad
  • Seyedghayem, Mir Mohammad
  • Jalali, Soheil
  • Venkatramani, Aishwarya
  • Saboor, Fahimeh Hooriabad
Abstract

<jats:p>The application of organic-inorganic nanocomposite membranes allows for a synergy between the desirable thermal and mechanical properties of inorganic materials with the reactivity, dielectric properties, durability, flexibility, and processability of the polymeric materials. Proton exchange membrane fuel cells (PEMFCs) suffer from some problems including water content management, carbon monoxide poisoning, hydrogen reformate, and fuel crossover through the membrane. Herein, specific solutions have been proposed to the above-mentioned problems using organ-inorganic nanocomposites. These solutions include doping proton conductive inorganic nano-particles in the proton exchange membrane, preparing nanocomposites via the sol-gel method, covalence bond of inorganic compounds with the polymer structure, and acid-based proton exchange nanocomposite membranes. Furthermore, hydrogen production with low carbon monoxide content using the ethanol steam reforming method, as well as the effect of CO in the hydrogen feed of PEMFC are explained and discussed. Finally, desirable conditions for achieving the maximum power density in exchange membrane cells (EMFCs) are discussed.</jats:p>

Topics
  • nanocomposite
  • density
  • compound
  • polymer
  • Carbon
  • Hydrogen
  • durability