People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Hoang, Dung
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2022New record high thermoelectric ZT of delafossite-based CuCrO<SUB>2</SUB> thin films obtained by simultaneously reducing electrical resistivity and thermal conductivity via heavy doping with controlled residual stresscitations
- 2021The efficiency of short sintering time on thermoelectric properties of delafossite CuCr0:85Mg0:15O2 ceramicscitations
- 2021Investigating the existence of oxygen interstitial in CuCr1က00xMgxO2 [0.00 X 0.30] thermoelectric materials by X-Ray photoelectron spectroscopy [XPS]citations
Places of action
Organizations | Location | People |
---|
article
Investigating the existence of oxygen interstitial in CuCr1က00xMgxO2 [0.00 X 0.30] thermoelectric materials by X-Ray photoelectron spectroscopy [XPS]
Abstract
<jats:p>Climate change is promoting researches on materials which is capable of converting environmentally friendly energy, in which materials that convert heat into electricity are receiving significant attention, because their ability of converting heat to electricity not only generates the electricity but also contributes to slow down the consumption of fossil fuel. The existence of point defects in the semiconductors greatly effected properties of materials, especially thermoelectric properties. Therefore, the study of defects in materials is a popular research trend today. In this study, we focus on evaluating the existence of oxygen interstitial in CuCr1က00xMgxO2 [0.00x0.30] compounds, because oxygen interstitial greatly affected the thermoelectric properties of this material. Based on X-ray photoelectron spectroscopy (XPS) analysis, at the large ratio of Mg impurity x = 0.15, the compound had the highest percentage of oxygen interstitial and was also a good thermoelectric material. In addition, it could be also seen that CuCrO2 material being doped a large Mg doping ratio (x = 0.15) was suitable for thermal-to-electrical applications rather than the ones with a small ratio (x0.05).</jats:p>