Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Piskin, Hasan

  • Google
  • 1
  • 15
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Challenges in electrical detection of spin-orbit torque in Ir20Mn80/Pt hetero-structures1citations

Places of action

Chart of shared publication
Divan, Ralu
1 / 2 shared
Novosad, Valentine
1 / 4 shared
Saglam, Hilal
1 / 2 shared
Karakas, Vedat
1 / 1 shared
Selvi, Ege
1 / 1 shared
Lendinez, Sergi
1 / 2 shared
Kocaman, Bayram
1 / 1 shared
Cay, Dogukan
1 / 1 shared
Akın, Kutay
1 / 1 shared
Hoffmann, Axel
1 / 11 shared
Ozatay, Ozhan
1 / 1 shared
Goksal, Ilkin
1 / 1 shared
Pearson, John E.
1 / 6 shared
Zhang, Wei
1 / 54 shared
Li, Yi
1 / 32 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Divan, Ralu
  • Novosad, Valentine
  • Saglam, Hilal
  • Karakas, Vedat
  • Selvi, Ege
  • Lendinez, Sergi
  • Kocaman, Bayram
  • Cay, Dogukan
  • Akın, Kutay
  • Hoffmann, Axel
  • Ozatay, Ozhan
  • Goksal, Ilkin
  • Pearson, John E.
  • Zhang, Wei
  • Li, Yi
OrganizationsLocationPeople

article

Challenges in electrical detection of spin-orbit torque in Ir20Mn80/Pt hetero-structures

  • Divan, Ralu
  • Novosad, Valentine
  • Saglam, Hilal
  • Karakas, Vedat
  • Selvi, Ege
  • Lendinez, Sergi
  • Kocaman, Bayram
  • Piskin, Hasan
  • Cay, Dogukan
  • Akın, Kutay
  • Hoffmann, Axel
  • Ozatay, Ozhan
  • Goksal, Ilkin
  • Pearson, John E.
  • Zhang, Wei
  • Li, Yi
Abstract

<jats:p>Manipulation of antiferromagnetic sublattice orientations, a key challenge in spintronic device applications, requires unconventional methods such as current induced torques including Spin Transfer Torque (STT) and Spin-Orbit Torque (SOT). In order to observe the deviation of the Néel vector from the anisotropy axis, one of the simplest approaches is the electrical detection, whereby one monitors the change in resistance as a function of applied current. In this work, we have investigated the conditions under which an ultra-thin metallic antiferromagnet, Ir20Mn80 becomes susceptible to SOT effects by studying antiferromagnetic layer structure and thickness dependence in antiferromagnetic metal (Ir20Mn80)/heavy metal (Pt) superlattices. Our electrical measurements reveal that in bilayer structures there exists a shallow range of Ir20Mn80 thicknesses (∼1–2 nm) for which SOT driven control of spins is apparent, whereas for lower thicknesses incomplete sublattice formation and for higher thicknesses improved thermal stability prohibits vulnerability to spin currents. Furthermore, in multilayers, structural changes in Ir20Mn80 layer quenches local torques due to stronger (111) magnetocrystalline anisotropy. These results suggest that an exhaustive optimization of the antiferromagnet parameters is crucial for the successful deployment of spintronic devices.</jats:p>

Topics
  • impedance spectroscopy