Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aguiar, S. R. M. M. De

  • Google
  • 1
  • 3
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Electrochemical behaviour of a cobalt-chromium-molybdenum dental alloy in artificial salivas9citations

Places of action

Chart of shared publication
Gomes, A.
1 / 9 shared
Nicolai, Marisa
1 / 1 shared
Almeida, M.
1 / 9 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Gomes, A.
  • Nicolai, Marisa
  • Almeida, M.
OrganizationsLocationPeople

article

Electrochemical behaviour of a cobalt-chromium-molybdenum dental alloy in artificial salivas

  • Aguiar, S. R. M. M. De
  • Gomes, A.
  • Nicolai, Marisa
  • Almeida, M.
Abstract

<p>The stability of the Co-Cr-Mo dental alloy immersed in artificial salivas (pH 6.7) was investigated over 24 h. Three artificial salivas have been studied: saline saliva (saliva I); saline saliva buffered with phosphate ions (saliva II) and saliva II plus mucin molecules (saliva III). For all the systems, open circuit potential shift positively over 24 hours of immersion. Data extracted from the steady-state polarization curves demonstrated that the Co-Cr-Mo alloy has higher corrosion potential in saliva III, lower corrosion potential in saliva I and lower initial corrosion resistance in saliva III. After 24 hours of immersion in the artificial salivas, the Co-Cr-Mo alloy presents high corrosion stability, due to the protective action created by the presence of corrosion products. From the analysis of the breakdown potential it was concluded that, the presence of the phosphate ions and mucin promote the oxidation process, inducing the formation of etch pits. Regarding the effect of the mucin concentration in the corrosion behaviour of the Co-Cr-Mo dental alloy, it was observed a negative shift in the corrosion potential, pointing to a cathodic inhibitor role for the mucin molecules. Nevertheless, no correlation between the mucin concentration and corrosion rate was possible to establish.</p>

Topics
  • molybdenum
  • corrosion
  • chromium
  • cobalt