People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dizdar, Senad
Halmstad University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2022Simulation of thermal and mechanical performance of laser cladded disc brake rotorscitations
- 2022Microstructural and Mechanical Properties of Polylactic Acid/Tin Bronze Tensile Strength Bars Additive Manufactured by Fused Deposition Modellingcitations
- 2021Laser Cladding Treatment for Refurbishing Disc Brake Rotorscitations
- 2020Grey Cast Iron Brake Discs Laser Cladded with Nickel-Tungsten Carbide—Friction, Wear and Airborne Wear Particle Emissioncitations
- 2020Grey Cast Iron Brake Discs Laser Cladded with Nickel-Tungsten Carbide—Friction, Wear and Airborne Wear Particle Emissioncitations
Places of action
Organizations | Location | People |
---|
booksection
Microstructural and Mechanical Properties of Polylactic Acid/Tin Bronze Tensile Strength Bars Additive Manufactured by Fused Deposition Modelling
Abstract
<jats:p>Tensile stress bar samples have been additive manufactured by fused deposition modelling (FDM) route by using polylactic acid (PLA)/tin bronze filament, thermal de-binding and air sintering. The samples reach sintered density of 7.42 g/cm3 or 85% of the relative density of the continuously casted CuSn10 reference. Tensile stress testing of the samples shows rather moderate mechanical properties, about half yield strength and one third maximal strength, elongation and hardness of the reference. Increase in the sample core density and elimination of large, agglomerated pores may result in largest improvement of the mechanical properties.</jats:p>