People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ozoegwu, Chigbogu G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2022Mechanical properties, tribology and electrochemical studies of Al/Fly ash/eggshell aluminium matrix compositecitations
- 2022The influence of sustainable reinforcing particulates on the density, hardness and corrosion resistance of AA 6063 matrix compositescitations
- 2022Evaluation of particle size distribution, mechanical properties, microstructure and electrochemical studies of AA1050/fly ash metal matrix compositecitations
- 2022Effects of carbonised eggshells on the mechanical properties, microstructure and corrosion resistance of AA1050 of metal matrix compositescitations
- 2021Characterization, machinability studies, and multi-response optimization of AA 6082 hybrid metal matrix compositecitations
- 2021Carbonization temperature and its effect on the mechanical properties, wear and corrosion resistance of aluminum reinforced with eggshellcitations
- 2021Machinability studies and optimization of aa 6082/fly ash/carbonized eggshell matrix compositecitations
- 2020A concise review of the effects of hybrid particulate reinforced aluminium metal matrix composites on the microstructure, density and mechanical propertiescitations
Places of action
Organizations | Location | People |
---|
article
The influence of sustainable reinforcing particulates on the density, hardness and corrosion resistance of AA 6063 matrix composites
Abstract
<p>The need for the fabrication of sustainable aluminium matrix composites (AMCs) is being sought after as practical alternatives to conventional metals and their alloys. This study was undertaken to investigate the effect of sustainable materials on the mechanical, physical and corrosion resistant properties of AA 6063. The weight fraction of the hybrid reinforcements was varied at 2.5, 5.0, 7.5 and 10.0 wt.%. For each variation, the fly ash and eggshells were weighed equally. The fabrication route selected was stir casting. The analysis of the density showed that the property decreased with increasing weight fraction of the hybrid reinforcements. Evaluation of the microhardness revealed hardness values of 78.13, 81.19, 81.54, 82.14, and 86.71 HV for the base metal, 2.5, 5.0, 7.5 and 10.0 wt.% samples respectively. The corrosion resistant properties were studied in 3.5 wt.% NaCl medium. The investigation showed that the reinforced AMCs exhibited improved corrosion resistance compared to the base metal. However, the 7.5 wt.% sample exhibited the least corrosion rate of 8.649 X 10<sup>-5</sup> g/h.</p>