Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nykyforchyn, Hryhoriy

  • Google
  • 1
  • 5
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Methodology of hydrogen embrittlement study of long-term operated natural gas distribution pipeline steels caused by hydrogen transport16citations

Places of action

Chart of shared publication
Unigovskyi, Leonid
1 / 1 shared
Tsyrulnyk, Oleksandr
1 / 2 shared
Student, Oleksandra
1 / 4 shared
Krechkovska, Halyna
1 / 2 shared
Hredil, Myroslava
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Unigovskyi, Leonid
  • Tsyrulnyk, Oleksandr
  • Student, Oleksandra
  • Krechkovska, Halyna
  • Hredil, Myroslava
OrganizationsLocationPeople

article

Methodology of hydrogen embrittlement study of long-term operated natural gas distribution pipeline steels caused by hydrogen transport

  • Nykyforchyn, Hryhoriy
  • Unigovskyi, Leonid
  • Tsyrulnyk, Oleksandr
  • Student, Oleksandra
  • Krechkovska, Halyna
  • Hredil, Myroslava
Abstract

<jats:p>A methodology of experimental research on hydrogen embrittlement of pipe carbon steels due to the transportation of hydrogen or its mixture with natural gas by a long-term operated gas distribution network is presented. The importance of comparative assessments of the steel in the as-received and operated states basing on the properties that characterize plasticity, resistance to brittle fracture and hydrogen assisted cracking is accentuated. Two main methodological peculiarities are pointed out, (i) testing specimens should be cut out in the transverse direction relative to the pipe axis; (ii) strength and plasticity characteristics should be determined using flat tensile specimens with the smallest possible thickness of the working part. The determination of hydrogen concentration in metal, metallographic and fractographic analyses have been supplemented the study. The effectiveness of the proposed methodology has been illustrated by the example of the steel research after its 52-year operation.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • strength
  • steel
  • Hydrogen
  • plasticity