Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pusterhofer, Stefan

  • Google
  • 2
  • 7
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Numerical crack growth study on porosity afflicted cast steel specimens6citations
  • 2019Short and long crack growth of aluminium cast alloys1citations

Places of action

Chart of shared publication
Schuscha, Manuel
1 / 3 shared
Meneghetti, Giovanni
1 / 9 shared
Leitner, Martin
2 / 66 shared
Stoschka, Michael
2 / 29 shared
Pomberger, Sebastian
1 / 8 shared
Garb, Christian
1 / 5 shared
Aigner, Roman
1 / 12 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Schuscha, Manuel
  • Meneghetti, Giovanni
  • Leitner, Martin
  • Stoschka, Michael
  • Pomberger, Sebastian
  • Garb, Christian
  • Aigner, Roman
OrganizationsLocationPeople

article

Numerical crack growth study on porosity afflicted cast steel specimens

  • Schuscha, Manuel
  • Meneghetti, Giovanni
  • Leitner, Martin
  • Pusterhofer, Stefan
  • Stoschka, Michael
Abstract

This paper deals with the fatigue assessment of cast steel defects in terms of macroscopic shrinkage porosity. Within preliminary studies, a generalized Kitagawa diagram GKD was established by numerical analyses of V-notched specimens with varying opening angles. It was experimentally verified by the application of the notch stress intensity factor (NSIF) concept on fatigue tests under rotating bending and axial loading. This paper continuous the work by an application of the GKD to real cast steel pores. At first, casting simulations are performed to design representative cast specimen geometries. The study focusses on macroscopic shrinkage pores with different spatial shapes. At second, fatigue tests under axial loading are conducted. Subsequent fracture surface analysis by light optical and scanning electron microscopy provides fracture mechanical based geometry parameters. Finally, the results of the experiments related to the failure relevant defect sizes are assessed by the GKD. In order to define an equivalent defect size of the complexly shaped defects, numerical crack growth analyses are performed demonstrating crack coalescence path tendencies. Summing up, the application of the NSIF approach based on a GKD shows a sound accordance to the experimental results and thus provides an engineering-feasible fatigue assessment method of cast steel components with macroscopic imperfections.

Topics
  • pore
  • surface
  • scanning electron microscopy
  • experiment
  • simulation
  • crack
  • steel
  • fatigue
  • casting
  • porosity
  • cast steel