Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Soares, Fernando Souza

  • Google
  • 1
  • 2
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Applications of lattice method in the simulation of crack path in heterogeneous materials1citations

Places of action

Chart of shared publication
Kosteski, Luis Eduardo
1 / 3 shared
Iturrioz, Ignacio
1 / 3 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Kosteski, Luis Eduardo
  • Iturrioz, Ignacio
OrganizationsLocationPeople

document

Applications of lattice method in the simulation of crack path in heterogeneous materials

  • Kosteski, Luis Eduardo
  • Soares, Fernando Souza
  • Iturrioz, Ignacio
Abstract

The simulation of critical and subcritical crack propagation in heterogeneous materials is not a simple problem in computational mechanics. These topics can be studied with different theoretical tools. In the crack propagation problem it is necessary to lead on the interface between the continuum and the discontinuity, and this region has different characteristics when we change the scale level point of view. In this context, this work applies a version of the lattice discrete element method (LDEM) in the study of such matters. This approach lets us to discretize the continuum with a regular tridimensional truss where the elements have an equivalent stiffness consistent with the material one wishes to model. The masses are lumped in the nodes and an uni-axial bilinear relation, inspired in the Hilleborg constitutive law, is assumed for the elements. The random characteristics of the material are introduced in the model considering the material toughness as a random field with defined statistical properties. It is important to highlight that the energy balance consistence is maintained during all the process. The spatial discretization lets us arrive to a motion equation that can be solved using an explicit scheme of integration on time. Two examples are shown in the present paper; one of them illustrates the possibilities of this method in simulating critical crack propagation in a solid mechanics problem: a simple geometry of grade material. In the second example, a simulation of subcritical crack growth is presented, when a pre-fissured quasi-brittle body is submitted to cyclic loading. In this second example, a strategy to measure crack advance in the model is proposed. Finally, obtained results and the performance of the model are discussed.

Topics
  • impedance spectroscopy
  • simulation
  • crack
  • random
  • discrete element method