People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Diambra, Andrea
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Lateral bearing factors and elastic stiffness factors for robotic CPT p-y module in undrained claycitations
- 2022Axial shear friction of polypropylene pipes against granular beds
- 2021Relationship between texture of polypropylene coatings and interface friction for sand at low stress levelscitations
- 2021Relationship between texture of polypropylene coatings and interface friction for sand at low stress levelscitations
- 2021Stiffness of granular soils under long-term multiaxial cyclic loadingcitations
- 20213D FE-informed laboratory soil testing for the design of offshore wind turbine monopilescitations
- 2021Stiffness of artificially cemented sands:insight on characterisation through empirical power relationshipscitations
- 2021Stiffness of artificially cemented sandscitations
- 2020Small to large strain mechanical behaviour of an alluvium stabilised with low carbon secondary mineralscitations
- 2020Polypropylene pipe interface strength on marine sandy soils with varying coarse fractioncitations
- 2019Strength anisotropy of fibre-reinforced sands under multiaxial loadingcitations
- 2019Cyclic polypropylene pipeline coating interface strength with granular materials at low stress
- 2019Cyclic polypropylene pipeline coating interface strength with granular materials at low stress
- 2019Stiffness of lightly cemented sand under multiaxial loadingcitations
- 2019Stiffness of lightly cemented sand under multiaxial loadingcitations
- 2019Effect of orientation of principal stress axes on cyclic liquefaction potential of soils
- 2019Effect of orientation of principal stress axes on cyclic liquefaction potential of soils
- 2018Compacted Chalk Putty-Cement Blends:Mechanical Properties and Performancecitations
- 2018Compacted Chalk Putty-Cement Blendscitations
- 2018Stress and time-dependent properties of crushed chalkcitations
- 2018Time and stress dependent strength and stiffness of reconstituted chalkcitations
- 2017Particle soil crushing: passive detection and interpretation
- 2017Evolution of elastic properties of granular soils under very large of number of multiaxial stress cycles
- 2016Evolution of small strain stiffness of granular soils with a large number of small loading cycles in the 3-D multiaxial stress space
- 2016Small strain stiffness evolution of reconstituted medium density chalk
- 2010Static liquefaction of fibre reinforced sand under monotonic loadingcitations
Places of action
Organizations | Location | People |
---|
document
Cyclic polypropylene pipeline coating interface strength with granular materials at low stress
Abstract
Laying subsea pipelines on dynamic seabeds comprising non-cohesive soils remains a challenge to geotechnical and pipeline engineers. Smooth polymer coatings are applied to protect the steel pipeline, but these relatively soft surfaces are subject to abrasion when pipes experience buckling or walking. Repeated start-up and shutdown cycles leads to cyclic movement across seabeds and even excess pore water pressure generation, so the interface strength may evolve in the process. This research subjects polypropylene pipeline coating speci-mens to submerged cyclic interface shear tests using two granular soils. Strength is observed to reduce by between ~10% and ~25% depending on the soil type and applied normal stress over the course of cycling to a cumulative horizontal displacement of ~1200mm. The reduction in strength is thought to occur in part due to grains creating striations and then repeatedly sliding up and down the same striation creating a smoothening effect for individual grains. Post-cyclic monotonic interface tests on the same surface specimen show an enhanced interface strength relative to the initial cyclic strength. This has implications for pipelines which may cycle locally and then walk or buckle to another location onto fresh un-sheared seabed sediments. Findings from this research are expected to reduce epistemic uncertainty in design and improve value for money in offshore engineering projects.