Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Arhin, Stephen

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Impact of Dedicated Bus Lanes on Intersection Operations and Travel Time Model Developmentcitations

Places of action

Chart of shared publication
Manandhar, Babin
1 / 1 shared
Anderson, Melissa
1 / 2 shared
Obike, Kevin
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Manandhar, Babin
  • Anderson, Melissa
  • Obike, Kevin
OrganizationsLocationPeople

report

Impact of Dedicated Bus Lanes on Intersection Operations and Travel Time Model Development

  • Manandhar, Babin
  • Arhin, Stephen
  • Anderson, Melissa
  • Obike, Kevin
Abstract

<jats:p>Over the years, public transit agencies have been trying to improve their operations by continuously evaluating best practices to better serve patrons. Washington Metropolitan Area Transit Authority (WMATA) oversees the transit bus operations in the Washington Metropolitan Area (District of Columbia, some parts of Maryland and Virginia). One practice attempted by WMATA to improve bus travel time and transit reliability has been the implementation of designated bus lanes (DBLs). The District Department of Transportation (DDOT) implemented a bus priority programon selected corridors in the District of Columbia leading to the installation of red-painted DBLs on corridors of H Street, NW, and I Street, NW. This study evaluates the impacts on the performance of transit buses along with the general traffic performance at intersections on corridors with DBLs installed in Washington, DC by using a “before” and “after” approach. The team utilized non-intrusive video data to perform vehicular turning movement counts to assess the traffic flow and delays (measures of effectiveness) with a traffic simulation software. Furthermore, the team analyzed the Automatic Vehicle Locator (AVL) data provided by WMATA for buses operating on the study segments to evaluate bus travel time. The statistical analysis showed that the vehicles traveling on H Street and I Street (NW) experienced significantly lower delays during both AM (7:00–9:30 AM) and PM (4:00–6:30 PM) peak hours after the installation of bus lanes. The approximation error metrics (normalized squared errors) for the testing dataset was 0.97, indicating that the model was predicting bus travel times based on unknown data with great accuracy. WMATA can apply this research to other segments with busy bus schedules and multiple routes to evaluate the need for DBLs. Neural network models can also be used to approximate bus travel times on segments by simulating scenarios with DBLs to obtain accurate bus travel times. Such implementation could not only improve WMATA’s bus service and reliability but also alleviate general traffic delays.</jats:p>

Topics
  • simulation
  • additive manufacturing