Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sinkus, Ralph

  • Google
  • 15
  • 93
  • 1456

King's College London

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (15/15 displayed)

  • 2024Biomechanical Assessment of Liver Integrity: Prospective Evaluation of Mechanical Versus Acoustic <scp>MR</scp> Elastography5citations
  • 2020On the origin of frequency power-law for tissue mechanics in elastographycitations
  • 2019Magnetic resonance elastography of skeletal muscle deep tissue injury17citations
  • 2019Magnetic resonance elastography of skeletal muscle deep tissue injurycitations
  • 2015MR Elastography Can Be Used to Measure Brain Stiffness Changes as a Result of Altered Cranial Venous Drainage During Jugular Compression60citations
  • 2014Tumour biomechanical response to the vascular disrupting agent ZD6126 in vivo assessed by magnetic resonance elastography.49citations
  • 2014Viscoelastic parameters for quantifying liver fibrosis20citations
  • 2013Measuring anisotropic muscle stiffness properties using elastography82citations
  • 2013Curl-based Finite Element Reconstruction of the Shear Modulus Without Assuming Local Homogeneity41citations
  • 2011Using static preload with magnetic resonance elastography to estimate large strain viscoelastic properties of bovine liver38citations
  • 2011Viscoelastic properties of the tongue and soft palate using MR elastography103citations
  • 2009Magnetic resonance elastography in the liver at 3 Tesla using a second harmonic approach44citations
  • 2008In vivo brain viscoelastic properties measured by magnetic resonance elastography377citations
  • 2007MR elastography of breast lesions290citations
  • 2005Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography330citations

Places of action

Chart of shared publication
Vilgrain, Valérie
2 / 2 shared
Annio, Giacomo
1 / 1 shared
Holm, Sverre
1 / 1 shared
Franck, Gregory
1 / 1 shared
Strijkers, Gustav J.
1 / 1 shared
Oomens, Cees W. J.
1 / 1 shared
Nicolay, Klaas
1 / 1 shared
Nelissen, Jules L.
1 / 1 shared
Nederveen, Aart J.
2 / 2 shared
Oomens, Cwj Cees
1 / 6 shared
Nelissen, Jl Jules
1 / 1 shared
Nicolaij, K. Klaas
1 / 1 shared
Strijkers, Gj Gustav
1 / 1 shared
Hatt, A.
1 / 1 shared
Tan, K.
1 / 4 shared
Cheng, S.
3 / 5 shared
Bilston, L. E.
4 / 4 shared
Waterton, John
1 / 1 shared
Robinson, Simon
1 / 3 shared
Jamin, Yann
1 / 1 shared
Li, Jin
1 / 8 shared
Bamber, Jeffrey
1 / 1 shared
Ulloa, Jose
1 / 2 shared
Jk, Boult
1 / 1 shared
Cummings, C.
1 / 1 shared
Albuquerque, Miguel
1 / 1 shared
Doblas, Sabrina
1 / 1 shared
Wagner, Mathilde
1 / 1 shared
Beers, Bernard E. Van
1 / 1 shared
Paradis, Valérie
1 / 1 shared
Lambert, Simon A.
1 / 3 shared
Garteiser, Philippe
1 / 2 shared
Ronot, Maxime
1 / 1 shared
Green, M. A.
1 / 5 shared
Qin, E.
1 / 1 shared
Geng, G.
1 / 10 shared
Gandevia, S. C.
2 / 2 shared
Honarvar, Mohammad
1 / 1 shared
Sahebjavaher, Ramin
1 / 1 shared
Salcudean, Septimiu
1 / 1 shared
Rohling, Robert
1 / 1 shared
Clarke, E. C.
1 / 1 shared
Green, M.
2 / 20 shared
Pettigrew, R. I.
1 / 1 shared
Gharib, A. M.
1 / 1 shared
Herzka, D. A.
1 / 1 shared
Kotys, M. S.
1 / 1 shared
Green, Michael A.
1 / 1 shared
Bilston, Lynne E.
1 / 1 shared
Fink, Mathias
1 / 10 shared
Siegmann, Katja
1 / 1 shared
Tanter, Mickael
1 / 3 shared
Xydeas, Tanja
1 / 1 shared
Claussen, Claus
1 / 1 shared
Kuhl, C.
1 / 1 shared
Lorenzen, J.
1 / 1 shared
Sondermann, E.
1 / 2 shared
Catheline, S.
1 / 2 shared
Fink, M.
1 / 3 shared
Tanter, M.
1 / 1 shared
Chart of publication period
2024
2020
2019
2015
2014
2013
2011
2009
2008
2007
2005

Co-Authors (by relevance)

  • Vilgrain, Valérie
  • Annio, Giacomo
  • Holm, Sverre
  • Franck, Gregory
  • Strijkers, Gustav J.
  • Oomens, Cees W. J.
  • Nicolay, Klaas
  • Nelissen, Jules L.
  • Nederveen, Aart J.
  • Oomens, Cwj Cees
  • Nelissen, Jl Jules
  • Nicolaij, K. Klaas
  • Strijkers, Gj Gustav
  • Hatt, A.
  • Tan, K.
  • Cheng, S.
  • Bilston, L. E.
  • Waterton, John
  • Robinson, Simon
  • Jamin, Yann
  • Li, Jin
  • Bamber, Jeffrey
  • Ulloa, Jose
  • Jk, Boult
  • Cummings, C.
  • Albuquerque, Miguel
  • Doblas, Sabrina
  • Wagner, Mathilde
  • Beers, Bernard E. Van
  • Paradis, Valérie
  • Lambert, Simon A.
  • Garteiser, Philippe
  • Ronot, Maxime
  • Green, M. A.
  • Qin, E.
  • Geng, G.
  • Gandevia, S. C.
  • Honarvar, Mohammad
  • Sahebjavaher, Ramin
  • Salcudean, Septimiu
  • Rohling, Robert
  • Clarke, E. C.
  • Green, M.
  • Pettigrew, R. I.
  • Gharib, A. M.
  • Herzka, D. A.
  • Kotys, M. S.
  • Green, Michael A.
  • Bilston, Lynne E.
  • Fink, Mathias
  • Siegmann, Katja
  • Tanter, Mickael
  • Xydeas, Tanja
  • Claussen, Claus
  • Kuhl, C.
  • Lorenzen, J.
  • Sondermann, E.
  • Catheline, S.
  • Fink, M.
  • Tanter, M.
OrganizationsLocationPeople

article

MR Elastography Can Be Used to Measure Brain Stiffness Changes as a Result of Altered Cranial Venous Drainage During Jugular Compression

  • Hatt, A.
  • Tan, K.
  • Cheng, S.
  • Sinkus, Ralph
  • Bilston, L. E.
Abstract

<p>BACKGROUND AND PURPOSE: Compressing the internal jugular veins can reverse ventriculomegaly in the syndrome of inappropriately low pressure acute hydrocephalus, and it has been suggested that this works by "stiffening" the brain tissue. Jugular compression may also alter blood and CSF flow in other conditions. We aimed to understand the effect of jugular compression on brain tissue stiffness and CSF flow.</p><p>MATERIALS AND METHODS: The head and neck of 9 healthy volunteers were studied with and without jugular compression. Brain stiffness (shear modulus) was measured by using MR elastography. Phase-contrast MR imaging was used to measure CSF flow in the cerebral aqueduct and blood flow in the neck.</p><p>RESULTS: The shear moduli of the brain tissue increased with the percentage of blood draining through the internal jugular veins during venous compression. Peak velocity of caudally directed CSF in the aqueduct increased significantly with jugular compression (P &lt; .001). The mean jugular venous flow rate, amplitude, and vessel area were significantly reduced with jugular compression, while cranial arterial flow parameters were unaffected.</p><p>CONCLUSIONS: Jugular compression influences cerebral CSF hydrodynamics in healthy subjects and can increase brain tissue stiffness, but the magnitude of the stiffening depends on the percentage of cranial blood draining through the internal jugular veins during compression-that is, subjects who maintain venous drainage through the internal jugular veins during jugular compression have stiffer brains than those who divert venous blood through alternative pathways. These methods may be useful for studying this phenomenon in patients with the syndrome of inappropriately low-pressure acute hydrocephalus and other conditions.</p>

Topics
  • impedance spectroscopy
  • phase