People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Algernon, Daniel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Evaluation of the Embrittlement in Reactor Pressure-Vessel Steels Using a Hybrid Nondestructive Electromagnetic Testing and Evaluation Approachcitations
- 2023Machine Learning Applications in Nondestructive Testing of Concrete Structurescitations
- 2011Rebar Detection with Cover Meter and Ultrasonic Pulse Echo Combined with Automated Scanning Systemcitations
- 2007Impact Echo Data Analysis Based on Hilbert-Huang Transformcitations
Places of action
Organizations | Location | People |
---|
article
Impact Echo Data Analysis Based on Hilbert-Huang Transform
Abstract
<jats:p> Impact echo is an acoustic method based on the use of transient stress waves generated by an elastic impact; it is used for nondestructive testing of concrete structures. In practical applications, the signals obtained often are superimposed by further mechanical vibrations and the so-called geometry effects, which are caused mainly by surface waves. Because of attenuation in the concrete as well as the divergence of the acoustical waves, impact echo signals are transient. As a result, the frequency content changes over time. Normally the analysis is carried out on the Fourier power spectrum of the signal. However, the Fourier spectrum is still affected by the mentioned effects and has well-known deficiencies for short transient signals within longer time sweeps. Application of the Hilbert-Huang transform is presented as a refined method for the time-frequency analysis of nonstationary impact echo data. The basic properties of the method and its practical application for time-frequency analysis of impact echo data, signal filtering, and pattern identification are presented. </jats:p>