People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nowakowski, Pawel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022Large Field of View and Artifact-Free Plan View TEM Specimen Preparation by Post-FIB Ar Milling
- 2022An Innovative Technique for Large-Scale Delayering of Semiconductor Devices with Nanometric-Scale Surface Flatness
- 2020Cutting-Edge Sample Preparation from FIB to Ar Concentrated Ion Beam Milling of Advanced Semiconductor Devices
- 2019Ultra-Thinning of Silicon for Backside Fault Isolationcitations
- 2019High Throughput and Multiple Length Scale Sample Preparation for Characterization and Failure Analysis of Advanced Semiconductor Devices
- 2018Narrow-Beam Argon Ion Milling of Ex Situ Lift-Out FIB Specimens Mounted on Various Carbon-Supported Gridscitations
- 2017Advanced Tools and Techniques for Delayering and Cross-Sectioning Semiconductor Devicescitations
- 2011Recent Developments in the Study of Grain Boundary Segregation by Wavelength Dispersive X-Ray Spectroscopy (WDS)
- 2010RuO<sub>2</sub> thin films deposited by spin coating on silicon substrates: pH‐dependence of the microstructure and catalytic propertiescitations
Places of action
Organizations | Location | People |
---|
article
High Throughput and Multiple Length Scale Sample Preparation for Characterization and Failure Analysis of Advanced Semiconductor Devices
Abstract
<jats:title>Abstract</jats:title><jats:p>Failure analysis of advanced semiconductor devices demands fast and accurate examination from the bulk to the specific area of the defect. Consequently, nanometer resolution and below is critical for finding defects. This work presents the use of argon ion milling methods for multiple length scale sample preparation, micrometer to sub-ångström, without sample preparation- induced artifacts for correlative SEM and TEM failure analysis. The result is an accurately delayered sample from which electron-transparent TEM specimens of less than 20 nm are obtained.</jats:p>