Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mieth, F.

  • Google
  • 2
  • 6
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Joining of contact pins and conductive compounds via injection molding – Influence of the flow situation on the electrical contact resistance2citations
  • 2019Characterization of anisotropic properties of hot compacted self-reinforced composites (SRCs) via thermal diffusivity measurement1citations

Places of action

Chart of shared publication
Heim, Hans-Peter
2 / 104 shared
Schlink, André
1 / 5 shared
Wiegel, K.
1 / 1 shared
Brabetz, L.
1 / 1 shared
Jakob, F.
1 / 6 shared
Schnau, M.
1 / 1 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Heim, Hans-Peter
  • Schlink, André
  • Wiegel, K.
  • Brabetz, L.
  • Jakob, F.
  • Schnau, M.
OrganizationsLocationPeople

article

Joining of contact pins and conductive compounds via injection molding – Influence of the flow situation on the electrical contact resistance

  • Heim, Hans-Peter
  • Mieth, F.
  • Schlink, André
  • Wiegel, K.
  • Brabetz, L.
Abstract

<jats:title>Abstract</jats:title><jats:p>While a lot of research can be found in the field of bulk resistance of carbon filled polymers, comparatively few papers focus on contact resistance between compound and metal contacts. Due to that small number of researches that deal with contact resistances, studies of the influence of injection molding conditions and parameters on the contact resistance are also very rare. In contradiction to that, these influences on bulk resistance have been studied. The objective of this work was to investigate the electrical contact resistance of overmolded tinplated copper contacts after modifying flow situations and molding conditions by procedural and constructional methods in contact areas. Metal pins were overmolded with a polypropylene compound containing 45 vol.% graphite, utilising an insert injection molding process. To affect the flow situation at the contacts, several processing parameters, such as mold temperature and injection speed, were modified. In addition, the contact alignment related to melt flow direction was varied. Electrical properties were studied and related to macroscopic and microscopic connection properties and flow situations in contact regions. It was found that the contact resistance is a significant factor while examining electrical resistances of overmolded samples. Furthermore, it was shown that the various flow situations had an essential impact on contact resistances. Weld lines at the position of the contact caused a decreased contact resistance. The correlation of the weld line effect, the filler orientation and contact resistance were successfully investigated by μ-CT. Regarding processing parameters, it was observed that a high mold temperature of 120 °C increased not only bulk conductivity, but also had a positive impact on contact conductivity. Macroscopic and microscopic connection mechanisms of contact surfaces were interpreted and connected to the experimental observations.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • compound
  • polymer
  • Carbon
  • melt
  • copper
  • injection molding
  • joining