People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schlink, André
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Algorithm for fast evaluation of in-plane fiber orientation in reinforced plastics using light microscopy images
- 2023Influence of Different Hot Runner-Systems in the Injection Molding Process on the Structural and Mechanical Properties of Regenerated Cellulose Fiber Reinforced Polypropylenecitations
- 2022Determination of Local Electrical Properties Using a Potential Field Measurement for Electrically Conductive Carbon Fiber Reinforced Plastics with Metal Contact Pins Joined via Injection Moldingcitations
- 2021Constant temperature approach for the assessment of injection molding parameter influence on the fatigue behavior of short glass fiber reinforced polyamide 6citations
- 2020Joining of contact pins and conductive compounds via injection molding – Influence of the flow situation on the electrical contact resistancecitations
Places of action
Organizations | Location | People |
---|
article
Joining of contact pins and conductive compounds via injection molding – Influence of the flow situation on the electrical contact resistance
Abstract
<jats:title>Abstract</jats:title><jats:p>While a lot of research can be found in the field of bulk resistance of carbon filled polymers, comparatively few papers focus on contact resistance between compound and metal contacts. Due to that small number of researches that deal with contact resistances, studies of the influence of injection molding conditions and parameters on the contact resistance are also very rare. In contradiction to that, these influences on bulk resistance have been studied. The objective of this work was to investigate the electrical contact resistance of overmolded tinplated copper contacts after modifying flow situations and molding conditions by procedural and constructional methods in contact areas. Metal pins were overmolded with a polypropylene compound containing 45 vol.% graphite, utilising an insert injection molding process. To affect the flow situation at the contacts, several processing parameters, such as mold temperature and injection speed, were modified. In addition, the contact alignment related to melt flow direction was varied. Electrical properties were studied and related to macroscopic and microscopic connection properties and flow situations in contact regions. It was found that the contact resistance is a significant factor while examining electrical resistances of overmolded samples. Furthermore, it was shown that the various flow situations had an essential impact on contact resistances. Weld lines at the position of the contact caused a decreased contact resistance. The correlation of the weld line effect, the filler orientation and contact resistance were successfully investigated by μ-CT. Regarding processing parameters, it was observed that a high mold temperature of 120 °C increased not only bulk conductivity, but also had a positive impact on contact conductivity. Macroscopic and microscopic connection mechanisms of contact surfaces were interpreted and connected to the experimental observations.</jats:p>