Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Silva, Leonardo Martins Da

  • Google
  • 1
  • 4
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Effects of Zn content on surface deformability and corrosion resistance of MgZnMnCa alloys2citations

Places of action

Chart of shared publication
Freitas, Bruno Xavier De
1 / 2 shared
Domingues, Gláucia
1 / 1 shared
Castro, José Adilson De
1 / 1 shared
Santos, Claudinei Dos
1 / 4 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Freitas, Bruno Xavier De
  • Domingues, Gláucia
  • Castro, José Adilson De
  • Santos, Claudinei Dos
OrganizationsLocationPeople

article

Effects of Zn content on surface deformability and corrosion resistance of MgZnMnCa alloys

  • Freitas, Bruno Xavier De
  • Domingues, Gláucia
  • Castro, José Adilson De
  • Silva, Leonardo Martins Da
  • Santos, Claudinei Dos
Abstract

<jats:title>Abstract</jats:title><jats:p>The effects of the Zn content on the mechanical and corrosion properties of MgZnMnCa alloys were investigated. The results revealed that with increasing Zn content up to 4 wt.%, the Mg-4Zn-0.2Mn-0.2Ca (wt.%) alloy after solution treatment at 400°C for 24 h (ZM40-S) exhibited a volume fraction of 1.56 ± 0.05 (vol.%) of secondary phases with an average grain size of 83.6 ± 1.6 µm. This alloy in the at-cast condition exhibited indentation hardness (H<jats:sub>it</jats:sub>) of 657.1 ± 17.8 MPa, which increased to 723.5 ± 29.8 MPa after solution treatments. In addition, the alloy also exhibited a Vickers hardness value of 66.8 ± 2.7 HV and an elastic modulus of 33.8 ± 0.6 GPa, close to the values for human bone. Further, the corrosion properties of this alloy were analyzed: it exhibited a cathodic polarization curve attributed to a hydrogen evolution reaction and an anodic curve corresponding to a passivation tendency, indicating the formation of an oxide layer at the surface; further, its corrosion rate was 0.23 mm/year.</jats:p>

Topics
  • surface
  • grain
  • corrosion
  • grain size
  • phase
  • hardness
  • Hydrogen