Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ponomaryova, Elena

  • Google
  • 1
  • 5
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Modelling, simulation and optimisation of pulse-reverse regime of copper, silver and gold electrodeposition1citations

Places of action

Chart of shared publication
Martinović, Sanja
1 / 39 shared
Dimitrijević, Stevan
1 / 1 shared
Vlahović, Milica
1 / 40 shared
Volkov-Husović, Tatjana
1 / 23 shared
Stević, Zoran
1 / 12 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Martinović, Sanja
  • Dimitrijević, Stevan
  • Vlahović, Milica
  • Volkov-Husović, Tatjana
  • Stević, Zoran
OrganizationsLocationPeople

article

Modelling, simulation and optimisation of pulse-reverse regime of copper, silver and gold electrodeposition

  • Ponomaryova, Elena
  • Martinović, Sanja
  • Dimitrijević, Stevan
  • Vlahović, Milica
  • Volkov-Husović, Tatjana
  • Stević, Zoran
Abstract

<jats:title>Abstract</jats:title><jats:p>Pulse-reverse power modes are used in galvanotechniques in order to obtain coatings with better characteristics in terms of gloss, adhesion, tracking sharp edges and uniform distribution of deposits on complex shape objects, compared with the coatings produced by constant current modes. Pulse-reverse modes also allow the use of a higher current density, and thus the production speed of electroplating cells increases. Systems for standard electroplating of copper, silver and gold are optimised by the suitable choice of duration and intensity of the pulses. It is shown that coatings with satisfactory quality can be deposited using higher current density, different modes of pulsed current in a very short period of time, without expensive and often dangerous additives in the electrolyte. Parameters of the model for certain electrochemical systems were determined by modelling and computer simulation, so the system behaviour under different circumstances becomes predictive.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • silver
  • simulation
  • gold
  • copper
  • current density
  • electrodeposition