People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Seyring, Martin
Schmalkalden University of Applied Sciences
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Crystalline Microstructure, Microsegregations, and Mechanical Properties of Inconel 718 Alloy Samples Processed in Electromagnetic Levitation Facilitycitations
- 2024Crystalline microstructure, microsegregations and mechanical properties of Inconel 718 alloy samples processed in electromagnetic levitation facilitycitations
- 2023Vibratory polishing of multiphase CuZn30//CuZn80 diffusion pairs for electron backscatter diffraction (EBSD) characterization
- 2023Effect of Co vs. Fe content on early stages of oxidation of Co-Cr-Fe-Mn-Ni-Si complex concentrated alloys at 800 °Ccitations
- 2023Modelling of the Solidifying Microstructure of Inconel 718citations
- 2023Early oxidation stages of austenitic stainless steel monitored using Mn as tracercitations
- 2023Modelling of the Solidifying Microstructure of Inconel 718: Quasi-Binary Approximationcitations
- 2023Modelling of the Solidifying Microstructure of Inconel 718:Quasi-Binary Approximationcitations
- 2019Self-Assembled Graphene/MWCNT Bilayers as Platinum- Free Counter Electrode in Dye-Sensitized Solar Cells
- 2019Self‐Assembled Graphene/MWCNT Bilayers as Platinum‐Free Counter Electrode in Dye‐Sensitized Solar Cellscitations
- 2017Influence of carbon source and synthesis temperature on structural and morphological properties of carbon nanofibers synthesized on tubular porous ZrO2 layerscitations
- 2017Phase formation in alloy-type anode materials in the quaternary system Li–Sn–Si–Ccitations
- 2016Materialographic Preparation of Lithium-Carbon Intercalation Compoundscitations
- 2009Characterization of grain structure in nanocrystalline gadolinium by high-resolution transmission electron microscopycitations
Places of action
Organizations | Location | People |
---|
article
Phase formation in alloy-type anode materials in the quaternary system Li–Sn–Si–C
Abstract
<jats:title>Abstract</jats:title><jats:p>Investigations on the thermodynamics of alloy-type anode materials have been carried out for the quaternary Li–C–Si–Sn system. Phase equilibria and phase stabilities were characterized in the binary subsystems Li–C, Li–Si, Li–Sn. The Calphad method was first used to optimize or completely re-establish all binary subsystems containing Li. For reasons of consistency, the binary subsystem Si–C had to be revisited and its Calphad description was modified. The ternary phase diagrams were then tentatively calculated by extrapolation from the binary subsystems and confirmed by key experiments. No ternary compounds were found. In order to verify the applicability of the anode materials in real batteries, some of the materials were nanostructured by ball milling and spark plasma sintering, the corresponding nanostructures were characterized. Theoretical predictions that nanograined Li<jats:sub>2</jats:sub>C<jats:sub>2</jats:sub> can also be used as cathode material were verified experimentally. The methodologies worked out in the present project (e. g. nanoscale structure transmission electron microscopy analysis, glow discharge optical emission spectroscopy) were also employed in other projects and led to publications concerning other materials such as Mg alloys, carbon nanofibers and an Mn-based antiperovskite.</jats:p>