Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Podrábský, Tomáš

  • Google
  • 2
  • 3
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2013Influence of strain rate on deformation mechanisms of an AZ31 magnesium alloy7citations
  • 2009Fatigue behaviour of AZ91 magnesium alloy ; Únavové vlastnosti hořčíkové slitiny AZ91citations

Places of action

Chart of shared publication
Forejt, Milan
1 / 18 shared
Zapletal, Josef
1 / 4 shared
Němcová, Aneta
1 / 3 shared
Chart of publication period
2013
2009

Co-Authors (by relevance)

  • Forejt, Milan
  • Zapletal, Josef
  • Němcová, Aneta
OrganizationsLocationPeople

article

Influence of strain rate on deformation mechanisms of an AZ31 magnesium alloy

  • Forejt, Milan
  • Podrábský, Tomáš
Abstract

The paper reports mechanical properties of magnesium alloy AZ31 deformed at low and high srain rates. Material was prepared using squeeze casting technology. Compresion test were deformed at an initial strain rate of 0,000083 1/s at temperatures between room temperature and 300 grad.Celsius. Dynamic compression Hopkinson test were carried out at roomtemperature with impact velocities ranging from 11,2 to 21,9 m/s. Transmissionelectron microscopy investigations showed significant dislocation and twins densities. Results are discussed considering the importance of the activation volume determined in the stress relaxation tests obtained at the low strain rate and quite separately, the importance of adiabatic shear banding at hihg strain rates.

Topics
  • Magnesium
  • magnesium alloy
  • Magnesium
  • dislocation
  • casting
  • activation
  • deformation mechanism
  • microscopy
  • relaxation test