People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mcdonald, Samuel Alan
MAX IV Laboratory
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2018AN INVESTIGATION INTO THE INTERFACE BEHAVIOUR OF AN ALUMINIUM/SILICON CARBIDE FIBRE METAL MATRIX COMPOSITE
- 2017Crack healing behaviour of Cr2AlC MAX phase studied by X-ray tomographycitations
- 2017Strain-induced Reactivation of Corrosion Pits in Austenitic Stainless Steelcitations
- 2017Microstructural evolution during sintering of copper particles studied by laboratory diffraction contrast tomography (LabDCT)citations
- 2016Application of a Quasi in-situ Experimental Approach to Estimate 3-D Pitting Corrosion Kinetics in Stainless Steelcitations
- 2014Correlative tomographycitations
- 2013Observation and quantification of three-dimensional crack propagation in poly-granular graphitecitations
- 2012In-situ X-ray microtomography study of the movement of a granular material within a diecitations
- 2012Spallation response of Ti-6Al-4V: Rear surface velocimetry and X-ray tomographycitations
- 2011In situ 3D X-ray microtomography study comparing auxetic and non-auxetic polymeric foams under tensioncitations
- 2009Shear cracking in an Al powder compact studied by X-ray microtomographycitations
- 2007The shock response, simulation and microstructural determination of a model composite materialcitations
- 2006Particle movement during the deep penetration of a granular material studied by X-ray microtomographycitations
- 2004Quantification of creep cavitation damage around a crack in a stainless steel pressure vesselcitations
Places of action
Organizations | Location | People |
---|
article
In-situ X-ray microtomography study of the movement of a granular material within a die
Abstract
Optimising the manufacture of powder-processed components requires an understanding of the 3-D movement and behaviour of granular materials during processing. X-ray microtomography has been employed to study the 3-D flow behaviour of a metallic powder in-situ within a die as a function of the displacement of a punch into the die. In particular, the powder transfer behaviour for various open and closed die/punch geometries has been compared, including situations where features exist within the die and on the punch, cases where the die is both open and closed at the top, and finally where the punch itself contains a groove in the centre providing a gap into which powder can flow. Digital image correlation (DIC) has enabled the determination of local vector displacements of powder around the features within the die cavity as a function of punch movement and powder constraint to reveal bulk granular movement and densification. Zones of relatively stagnant flow are observed above a fixed insert within the die cavity, at the opening of a gap within a punch, and as a result of a closed die configuration, the latter showing transitions between the stagnant zones and much more mobile regions and the resulting powder compaction/dilation. As well as providing a means of developing practical die fill and compaction strategies that homogenise densification and thus improve product quality, the technique can also provide unique 3-D flow trajectories for model development. © Carl Hanser Verlag GmbH &Co. KG.