Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Huppmann, Michael

  • Google
  • 1
  • 3
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011The effect of heat treatments on the microstructure, texture and mechanical properties of the extruded magnesium alloy ME219citations

Places of action

Chart of shared publication
Brömmelhoff, Katrin
1 / 3 shared
Böttcher, Katrin
1 / 7 shared
Reimers, Walter
1 / 29 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Brömmelhoff, Katrin
  • Böttcher, Katrin
  • Reimers, Walter
OrganizationsLocationPeople

article

The effect of heat treatments on the microstructure, texture and mechanical properties of the extruded magnesium alloy ME21

  • Brömmelhoff, Katrin
  • Böttcher, Katrin
  • Huppmann, Michael
  • Reimers, Walter
Abstract

<jats:title>Abstract</jats:title><jats:p>Heat treatments of the hot extruded magnesium alloy ME21 were performed at 400 °C – 550 °C and various annealing times. The evolution of the microstructure, the texture and the resulting mechanical properties were investigated. The heat treatments result in grain growth and in an intensification of the so-called rare earth texture. The grain coarsening results in a decrease in the yield strength according to the Hall – Petch relationship. The rare earth texture also contributes to a decrease in the yield strength due to the easy activation of basal slip systems. However, this texture improves the ductility at room temperature. The combination of large grain sizes, dissolved Mg<jats:sub>12</jats:sub>Ce precipitates and the rare earth texture delivers fracture strains up to  – 55 % under compression. The elongation under tension is less affected.</jats:p>

Topics
  • impedance spectroscopy
  • grain
  • grain size
  • Magnesium
  • magnesium alloy
  • Magnesium
  • laser emission spectroscopy
  • strength
  • texture
  • precipitate
  • annealing
  • activation
  • yield strength
  • ductility
  • grain growth