People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yan, Kun
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2022Creep deformation phenomena in near-surface carburised layers of 316H stainless steels
- 2022Creep performance of carburized 316H stainless steel at 550°Ccitations
- 2022The Mechanical Performance of Additively Manufactured 316L Austenitic Stainless Steelcitations
- 2021Solidification microstructure and residual stress correlations in direct energy deposited type 316L stainless steelcitations
- 2021Oxidation and carburization behaviour of two type 316H stainless steel casts in simulated AGR gas environment at 550 and 600 °Ccitations
- 2019Deformation Mechanisms of Twinning-Induced Plasticity Steel Under Shock-Load: Investigated by Synchrotron X-Ray Diffractioncitations
- 2018Investigating nano-precipitation in a V-containing HSLA steel using small angle neutron scatteringcitations
- 2016In situ synchrotron X-ray diffraction studies of the effect of microstructure on tensile behavior and retained austenite stability of thermo-mechanically processed transformation induced plasticity steelcitations
- 2014Martensitic phase transformation and deformation behavior of Fe-Mn-C-Al twinning-induced plasticity steel during high-pressure torsioncitations
- 2013Defect dynamics in polycrystalline zirconium alloy probed in situ by primary extinction of neutron diffractioncitations
- 2012Characterization of superelasticity in a new Fe-based shape memory alloy using neutron and synchrotron radiation
- 2012Hot deformation of cast and extruded TiAl:An in-situ diffraction studycitations
- 2011Phase transition and ordering behavior of ternary Ti-Al-Mo alloys using in-situ neutron diffractioncitations
- 2009From single grains to texturecitations
- 2009In situ observation of dynamic recrystallization in the bulk of zirconium alloycitations
- 2009In situ study of dynamic recrystallization and hot deformation behavior of a multiphase titanium aluminide alloycitations
Places of action
Organizations | Location | People |
---|
article
Phase transition and ordering behavior of ternary Ti-Al-Mo alloys using in-situ neutron diffraction
Abstract
Neutron diffraction has been used for in-situ investigations to elucidate the phase transformation behavior of two Mo-containing TiAl alloys with compositions of Ti-44Al-3Mo and Ti-44Al-7Mo (in at.%). Five different phases are present in these alloys. These include three ordered phases at room temperature, namely α 2 , β 0 and γ and two disordered phases, a and β, which occur at higher temperatures. The sequence of the three phase transformations in each alloy has been determined. The phase transformation and disordering/ordering temperatures were determined on heating and cooling from the diffracted peak intensities. The neutron experiments are particularly sensitive to the order-disorder transitions in TiAl alloys, which are compared with the overall phase fractions obtained from previous high energy X-ray diffraction. Hysteresis and undercooling effects are observed for the various phase transformations and depend on the nature of atomic rearrangements.