People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chromiński, Witold
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Albumin suppresses oxidation of Ti-Nb alloy in the simulated inflammatory environment
- 2021Microstructure, Texture and Mechanical Properties of Mg-6Sn Alloy Processed by Differential Speed Rollingcitations
- 2019Investigation of different severe plastic deformation methods effect on Ti13Nb13Zr
- 2019Tribological behavior of a hydrostatically extruded ultra-fine grained Ti-13Nb-13Zr alloycitations
- 2019The importance of microstructural heterogeneities in the work hardening of ultrafine-grained aluminum, studied by in-situ TEM straining and mechanical testscitations
- 2018Enhanced strength and electrical conductivity of ultrafine-grained Al-Mg-Si alloy processed by hydrostatic extrusioncitations
- 2018Mechanisms of plastic deformation in ultrafine-grained aluminium – In-situ and ex-post studiescitations
- 2017Ultrafine-Grained Plates of Al-Mg-Si Alloy Obtained by Incremental Equal Channel Angular Pressing: Microstructure and Mechanical Propertiescitations
- 2017Microstructure and Texture Evolutions of Biomedical Ti-13Nb-13Zr Alloy Processed by Hydrostatic Extrusioncitations
- 2017Mechanical properties and corrosion resistance of ultrafine grained austenitic stainless steel processed by hydrostatic extrusioncitations
- 2017Accumulation and mechanism of the fatigue damage for a nickel based superalloy
- 2017Evaluation of mechanical properties and anisotropy of ultra-fine grained 1050 aluminum sheets produced by incremental ECAPcitations
- 2016Mechanical properties, structural and texture evolution of biocompatible Ti–45Nb alloy processed by severe plastic deformationcitations
- 2016Incremental ECAP as a method to produce ultrafine grained aluminium platescitations
- 2015Microstructure evolution in aluminium 6060 during Incremental ECAP
- 2015Efficient method of producing ultrafine grained non-ferrous metals
- 2015Grain refinement in technically pure aluminium plates using incremental ECAP processingcitations
- 2014Enhancement of mechanical properties of biocompatible Ti-45Nb alloy by hydrostatic extrusioncitations
- 2014Incremental ECAP as a novel tool for producing ultrafine grained aluminium platescitations
Places of action
Organizations | Location | People |
---|
article
Tribological behavior of a hydrostatically extruded ultra-fine grained Ti-13Nb-13Zr alloy
Abstract
This contribution summarizes the results an investigation of the wear resistance of as received initial state and nano-structured Ti-13Nb-13Zr alloy obtained by hydrostatic extrusion. The tribological behavior was examined using a ball-on-disc tribometer under unlubricated sliding contact conditions against an Al2O3 ceramic ball. Friction coefficient, material transfer and wear debris of the samples were observed after the wear tests. Wear characteristics of the samples were investigated by means of an optical profilometer, mechanical profilometer and scanning electron microscope for wear debris morphology and wear tracks. Although friction coefficients are very similar according to tribological observations, the domestic distribution of wear characteristics varied for samples of various grain sizes. Morphological observations have shown that surface responses to abrasive ceramic balls involve localized long and short wear debris, fracture, surface plowing causing adhesive wear and the formation of larger surface debris, and material transfer between titanium and the ceramic counterpart. © Carl Hanser Verlag, München.