People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jamrozy, Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Comparative characterization of quasi-static and cyclic deformation behavior of glass fiber-reinforced polyurethane (GFR-PU) and epoxy (GFR-EP)
Abstract
<jats:title>Abstract</jats:title><jats:p>Glass fiber-reinforced polymers (GFRP) are highly suitable for use in transportation industry in order to achieve the targets of energy and resource efficiency. In this context, due to its high specific strength, GFR-epoxy (GFR-EP) has already been implemented in a wide range of applications. However, in cases of energy efficiency and damage tolerance, GFR-EP shows disadvantages compared to GFR-polyurethane (GFR-PU). The aim of this study is the comparative characterization of the quasi-static and cyclic deformation behavior of GFR-PU and GFR-EP with similar layer setup. The mechanical properties have been investigated in instrumented tensile, interlaminar shear strength and compression after impact tests. In addition, the tests were combined with varying temperatures (−30 °C, RT, +70 °C) with respect to aerospace applications to determine the material property development under low and elevated temperatures. In cyclic investigations, the fatigue properties have been estimated by resource-efficient multiple step tests and validated in constant amplitude tests. Hysteresis and temperature measurements were applied in order to investigate the damage processes. It could be shown that polyurethane exhibits improved damage tolerance by significantly reducing delamination area under impact loading, whereas epoxy leads to optimized properties under elevated temperature. Furthermore, epoxy generally underlines higher capabilities under cyclic loading, which is due to void content of polyurethane.</jats:p>